Расчет показателей вариации в excel

Как рассчитать коэффициент вариации в exсel

Введение в дисперсию в Excel

Дисперсия используется в тех случаях, когда у нас есть некоторые бюджеты, и мы можем знать, какие отклонения наблюдаются при исполнении бюджетов. В некоторых случаях термин дисперсия также используется для расчета разницы между запланированным и фактическим результатом, который был получен. Вычисление отклонений является отличным способом анализа данных, так как это позволяет нам определить разброс вариаций в наборе данных.

Дисперсия — это не что иное, как информация, показывающая, насколько хорошо распространяются данные. Расчет дисперсии требуется особенно в тех случаях, когда мы выполняли выборку данных

Теперь важно, чтобы мы использовали правильную функцию для вычисления дисперсии, например VAR.S или VAR.P. У нас есть несколько случаев для расчета дисперсии в Excel, где у нас есть некоторые данные, которые были спроектированы на период, и мы хотим сравнить это с фактическими цифрами

Как рассчитать дисперсию в Excel?

Давайте разберемся, как рассчитать дисперсию в Excel на нескольких примерах.

Пример № 1 — Расчет дисперсии в Excel для всей совокупности

Если набор данных предназначен для полной совокупности, то нам нужно использовать функцию VAR.P из excel. Это потому, что в Excel у нас есть две функции, которые предназначены для разных наборов данных.

У нас могут быть данные, которые собираются на основе выборки, которой может быть население всего мира.

VAR.P использует следующую формулу:

Шаг 1 — Введите набор данных в столбцах.

Шаг 2 — Вставьте функцию VAR.P и выберите диапазон набора данных. Здесь следует отметить одну вещь: если какая-либо ячейка имеет ошибку, эта ячейка будет игнорироваться.

Шаг 3 — После нажатия клавиши Enter мы получим дисперсию.

Мы вычислили дисперсию множества B, выполнив те же шаги, что и выше. Результат дисперсии множества B показан ниже.

Пример № 2 — Расчет дисперсии для размера выборки в Excel

Если у нас есть набор данных, представляющий образцы, нам нужно использовать функцию VAR.S вместо использования VAR.P

Это связано с тем, что эта функция была разработана для расчета дисперсии с учетом характеристик метода выборки.

VAR.S использует следующую формулу:

Шаг 1 — Введите набор данных в столбце.

Шаг 2 — Вставьте функцию VAR.S и выберите диапазон набора данных.

Шаг 3 — Мы получим дисперсию.

Мы вычислили дисперсию множества B, выполнив те же шаги, что и выше. Результат дисперсии набора B показан ниже.

Пример № 3 — Расчет кванта дисперсии для данных в Excel

Мы можем просто захотеть вычислить дисперсию в данных, и нам может понадобиться дисперсия с точки зрения количества, а не с точки зрения анализа данных.

Если нам нужно проверить изменение, то нам нужно использовать следующий метод.

Шаг 1 — Рассчитайте разницу между двумя данными, используя функцию вычитания.

Шаг 2 — После нажатия клавиши Enter мы получим результат. Чтобы получить дисперсию целых данных, нам нужно перетащить формулу, примененную к ячейке C2.

Шаг 3 — Теперь дисперсия может быть как положительной, так и отрицательной, и это будет вычисленная дисперсия.

Пример № 4 — Расчет процента дисперсии для набора данных в Excel

Возможно, нам потребуется рассчитать процентное изменение данных за определенный период времени, и в таких случаях нам необходимо использовать приведенный ниже метод.

Шаг 1 — Во-первых, рассчитать дисперсию из метода 3-го.

Шаг 2 — Теперь рассчитайте процент с помощью функции ниже.

Изменение значения / исходного значения * 100. Это будет наше процентное изменение в наборе данных.

Шаг 3 — Чтобы получить процент дисперсии целых данных, мы должны перетащить формулу, примененную к ячейке D2.

Что нужно помнить о дисперсии в Excel

  • Если у нас есть набор данных, который представляет полную совокупность, то нам нужно использовать функцию VAR.P
  • Если у нас есть набор данных, который представляет образцы из мировых данных, то нам нужно использовать функцию VAR.S
  • Здесь S представляет образцы.
  • Если мы рассчитываем изменение в терминах кванта, то отрицательное изменение означает увеличение фактической стоимости, а положительное изменение означает уменьшение стоимости.
  • В случае использования VAR.P аргументы могут быть числом или именем, массивами или ссылкой, содержащей числа.
  • Если какая-либо из ячеек, указанных в качестве ссылки в формуле, содержит ошибку, эта ячейка будет проигнорирована.

Рекомендуемые статьи

Это руководство по дисперсии в Excel. Здесь мы обсудили, как рассчитать дисперсию в Excel вместе с практическими примерами и загружаемым шаблоном Excel. Вы также можете просмотреть наши другие предлагаемые статьи —

  1. Важные функции математики в Excel
  2. Лучшие 25 расширенных формул и функций в Excel
  3. ЭТАЖ Функция в Excel
  4. Как использовать функцию квадратного корня в Excel?
  5. Расширенные формулы в Excel

Прогнозируем с Excel: как посчитать коэффициент вариации

Каждый раз, выполняя в Excel статистический анализ, нам приходится сталкиваться с расчётом таких значений, как дисперсия, среднеквадратичное отклонение и, разумеется, коэффициент вариации.

Именно расчёту последнего стоит уделить особое внимание

Очень важно, чтобы каждый новичок, который только приступает к работе с табличным редактором, мог быстро подсчитать относительную границу разброса значений

Очень важно, чтобы каждый новичок, который только приступает к работе с табличным редактором, мог быстро подсчитать относительную границу разброса значений. В этой статье мы расскажем, как автоматизировать расчеты при прогнозировании данных

В этой статье мы расскажем, как автоматизировать расчеты при прогнозировании данных

Что такое коэффициент вариации и для чего он нужен?

Итак, как мне кажется, нелишним будет провести небольшой теоретический экскурс и разобраться в природе коэффициента вариации.

Этот показатель необходим для отражения диапазона данных относительно среднего значения. Иными словами, он показывает отношение стандартного отклонения к среднему значению.

Коэффициент вариации принято измерять в процентном выражении и отображать с его помощью однородность временного ряда.

Так, если вы видите, что значение коэффициента равно 0%, то с уверенностью заявляйте о том, что ряд является однородным, а значит, все значения в нём равны один с другим.

В случае, если коэффициент вариации принимает значение, превышающее отметку в 33%, то это говорит о том, что вы имеете дело с неоднородным рядом, в котором отдельные значения существенно отличаются от среднего показателя выборки.

Как найти среднее квадратичное отклонение?

Поскольку для расчёта показателя вариации в Excel нам необходимо использовать среднее квадратичное отклонение, то вполне уместно будет выяснить, как нам посчитать этот параметр.

Из школьного курса алгебры мы знаем, что среднее квадратичное отклонение — это извлечённый из дисперсии квадратный корень, то есть этот показатель определяет степень отклонения конкретного показателя общей выборки от её среднего значения. С его помощью мы можем измерить абсолютную меру колебания изучаемого признака и чётко её интерпретировать.

Рассчитываем коэффициент в Экселе

К сожалению, в Excel не заложена стандартная формула, которая бы позволила рассчитать показатель вариации автоматически. Но это не значит, что вам придётся производить расчёты в уме. Отсутствие шаблона в «Строке формул» никоим образом не умаляет способностей Excel, потому вы вполне сможете заставить программу выполнить необходимый вам расчёт, прописав соответствующую команду вручную.

Вставьте формулу и укажите диапазон данных

Для того чтобы рассчитать показатель вариации в Excel, необходимо вспомнить школьный курс математики и разделить стандартное отклонение на среднее значение выборки. То есть на деле формула выглядит следующим образом — СТАНДОТКЛОН(заданный диапазон данных)/СРЗНАЧ(заданный диапазон данных). Ввести эту формулу необходимо в ту ячейку Excel, в которой вы хотите получить нужный вам расчёт.

Не забывайте и о том, что поскольку коэффициент выражается в процентах, то ячейке с формулой нужно будет задать соответствующий формат. Сделать это можно следующим образом:

  1. Откройте вкладку «».
  2. Найдите в ней категорию «Формат ячеек» и выберите необходимый параметр.

Как вариант, можно задать процентный формат ячейке при помощи клика по правой кнопке мыши на активированной клеточке таблицы. В появившемся контекстном меню, аналогично вышеуказанному алгоритму нужно выбрать категорию «Формат ячейки» и задать необходимое значение.

Выберите «Процентный», а при необходимости укажите число десятичных знаков

Возможно, кому-то вышеописанный алгоритм покажется сложным. На самом же деле расчёт коэффициента так же прост, как сложение двух натуральных чисел. Единожды выполнив эту задачу в Экселе, вы больше никогда не вернётесь к утомительным многосложным решениям в тетрадке.

Всё ещё не можете сделать качественное сравнение степени разброса данных? Теряетесь в масштабах выборки? Тогда прямо сейчас принимайтесь за дело и осваивайте на практике весь теоретический материал, который был изложен выше! Пусть статистический анализ и разработка прогноза больше не вызывают у вас страха и негатива. Экономьте свои силы и время вместе с табличным редактором Excel.

Разбираем формулы среднеквадратического отклонения и дисперсии в Excel

Цель данной статьи показать, как математические формулы, с которыми вы можете столкнуться в книгах и статьях, разложить на элементарные функции в Excel.

В данной статье мы разберем формулы среднеквадратического отклонения и дисперсии и рассчитаем их в Excel.

Перед тем как переходить к расчету среднеквадратического отклонения и разбирать формулу, желательно разобраться в элементарных статистических показателях и обозначениях.

Рассматривая формулы моделей прогнозирования, мы встретимся со следующими показателями:

Например, у нас есть временной ряд — продажи по неделям в шт.

Для этого временного ряда i=1, n=10 , ,

Рассмотрим формулу среднего значения:

Для нашего временного ряда определим среднее значение

Также для выявления тенденций помимо среднего значения представляет интерес и то, насколько наблюдения разбросаны относительно среднего. Среднеквадратическое отклонение показывает меру отклонения наблюдений относительно среднего.

Формула расчета среднеквадратического отклонение для выборки следующая:

Разложим формулу на составные части и рассчитаем среднеквадратическое отклонение в Excel на примере нашего временного ряда.

1. Рассчитаем среднее значение для этого воспользуемся формулой Excel =СРЗНАЧ(B11:K11)

= СРЗНАЧ(ссылка на диапазон) = 100/10=10

2. Определим отклонение каждого значения ряда относительно среднего

для первой недели = 6-10=-4

для второй недели = 10-10=0

для третей = 7-1=-3 и т.д.

3. Для каждого значения ряда определим квадрат разницы отклонения значений ряда относительно среднего

для первой недели = (-4)^2=16

для второй недели = 0^2=0

для третей = (-3)^2=9 и т.д.

4. Рассчитаем сумму квадратов отклонений значений относительно среднего с помощью формулы =СУММ(ссылка на диапазон (ссылка на диапазон с )

=16+0+9+4+16+16+4+9+0+16=90

5. , для этого сумму квадратов отклонений значений относительно среднего разделим на количество значений минус единица (Сумма((Xi-Xср)^2))/(n-1)

= 90/(10-1)=10

6. Среднеквадратическое отклонение равно = корень(10)=3,2

Итак, в 6 шагов мы разложили сложную математическую формулу, надеюсь вам удалось разобраться со всеми частями формулы и вы сможете самостоятельно разобраться в других формулах.

Рассмотрим еще один показатель, который в будущем нам понадобятся — дисперсия.

Как рассчитать дисперсию в Excel?

Дисперсия — квадрат среднеквадратического отклонения и отражает разброс данных относительно среднего.

Рассчитаем дисперсию:

Итак, теперь мы умеем рассчитывать среднеквадратическое отклонение и дисперсию в Excel. Надеемся, полученные знания пригодятся вам в работе.

Точных вам прогнозов!

  • Novo Forecast Lite — автоматический расчет прогноза в Excel .
  • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

Среднеквадратичное отклонение — что это

Стандартное (или среднеквадратичное) отклонение – это квадратный корень из дисперсии. В свою очередь, под последним термином подразумевается степень разброса значений. Для получения дисперсии, и, как следствие, ее производного в виде стандартного отклонения, существует специальная формула, которая, впрочем, нам не так важна. Она довольно сложная по своей структуре, но при этом ее можно полностью автоматизировать средствами Excel. Главное – знать, какие параметры нужно передавать функции. В целом как для вычисления дисперсии, так и стандартного отклонения, аргументы используются одинаковые.

  1. Сначала мы получаем среднее арифметическое.
  2. После этого каждое исходное значение сопоставляется со средним и определяется разница между ними.
  3. После этого каждая разница возводится во вторую степень, после чего получившиеся результаты складываются между собой.
  4. Наконец, финальный шаг – деление получившегося значения на общее количество элементов в данной выборке.

Получив разницу между одним значением и средним арифметическим всей выборки, мы можем узнать расстояние к нему от определенной точки на координатной прямой. Начинающему человеку вся логика понятна равно до третьего шага. Зачем возводить значение в квадрат? Дело в том, что иногда разница может быть отрицательной, а нам нужно получить положительное число. И, как известно, минус на минус дает плюс. А далее нам нужно определить среднее арифметическое из получившихся значений. Дисперсия имеет несколько свойств:

  1. Если выводить дисперсию из одного числа, то она всегда будет равняться нулю.
  2. Если случайное число умножить на константу А, то дисперсия увеличится в количество раз, равное А в квадрате. Проще говоря, константу можно вынести за знак дисперсии и возвести его во вторую степень.
  3. Если к произвольному числу добавить константу А или же отнять ее, то дисперсия от этого не поменяется.
  4. Если два случайных числа, обозначаемых, к примеру переменными X и Y не зависят друг от друга, то в таком случае для них справедлива формула. D(X+Y) = D(X) + D(Y)
  5. Если же в предыдущую формулу внести изменения и пытаться определить дисперсию разницы этих значений, то она также будет составлять сумму этих дисперсий.

Среднеквадратическое отклонение – это математический термин, являющийся производным от дисперси. Получить его очень просто: достаточно извлечь квадратный корень из дисперсии.

Разница между дисперсией и стандартным отклонением находится сугубо в плоскости единиц измерения, если можно так выразиться. Стандартное отклонение является значительно более простым для считывания показателем, поскольку оно показывается не в квадратах числа, а непосредственно в значениях. Простыми словами, если в числовой последовательности 1,2,3,4,5 средним арифметическим является 3, то соответственно, стандартным отклонением будет число 1,58. Это говорит о том, что в среднем одно число отклоняется от среднего числа (которым является тройка в нашем примере), на 1,58.

Дисперсия же будет тем же самым числом, только возведенным в квадрат. В нашем примере – чуть меньше, чем 2,5. В принципе, можно использовать как дисперсию, так и стандартное отклонение для статистических расчетов, только надо четко знать, с каким именно показателем пользователь работает.

Дисперсия случайной величины

Чтобы вычислить дисперсию случайной величины, необходимо знать ее функцию распределения.

Для дисперсии случайной величины Х часто используют обозначение Var(Х). Дисперсия равна математическому ожиданию квадрата отклонения от среднего E(X): Var(Х)=E

Если случайная величина имеет дискретное распределение, то дисперсия вычисляется по формуле:

где xi – значение, которое может принимать случайная величина, а μ – среднее значение (математическое ожидание случайной величины), р(x) – вероятность, что случайная величина примет значение х.

Если случайная величина имеет непрерывное распределение, то дисперсия вычисляется по формуле:

Для распределений, представленных в MS EXCEL, дисперсию можно вычислить аналитически, как функцию от параметров распределения. Например, для Биномиального распределения дисперсия равна произведению его параметров: n*p*q.

Примечание: Дисперсия, является вторым центральным моментом, обозначается D, VAR(х), V(x). Второй центральный момент — числовая характеристика распределения случайной величины, которая является мерой разброса случайной величины относительно математического ожидания.

Примечание: О распределениях в MS EXCEL можно прочитать в статье Распределения случайной величины в MS EXCEL.

Размерность дисперсии соответствует квадрату единицы измерения исходных значений. Например, если значения в выборке представляют собой измерения веса детали (в кг), то размерность дисперсии будет кг 2 . Это бывает сложно интерпретировать, поэтому для характеристики разброса значений чаще используют величину равную квадратному корню из дисперсии – стандартное отклонение.

Некоторые свойства дисперсии:

Var(Х+a)=Var(Х), где Х — случайная величина, а — константа.

Var(Х)=E=E=E(X 2 )-E(2*X*E(X))+(E(X)) 2 =E(X 2 )-2*E(X)*E(X)+(E(X)) 2 =E(X 2 )-(E(X)) 2

Это свойство дисперсии используется в статье про линейную регрессию .

Var(Х+Y)=Var(Х) + Var(Y) + 2*Cov(Х;Y), где Х и Y — случайные величины, Cov(Х;Y) — ковариация этих случайных величин.

Если случайные величины независимы (independent), то их ковариация равна 0, и, следовательно, Var(Х+Y)=Var(Х)+Var(Y). Это свойство дисперсии используется при выводе стандартной ошибки среднего.

Покажем, что для независимых величин Var(Х-Y)=Var(Х+Y). Действительно, Var(Х-Y)= Var(Х-Y)= Var(Х+(-Y))= Var(Х)+Var(-Y)= Var(Х)+Var(-Y)= Var(Х)+(-1) 2 Var(Y)= Var(Х)+Var(Y)= Var(Х+Y). Это свойство дисперсии используется для построения доверительного интервала для разницы 2х средних.

Как написать коэффициент в экселе

Одним из основных статистических показателей последовательности чисел является коэффициент вариации. Для его нахождения производятся довольно сложные расчеты. Инструменты Microsoft Excel позволяют значительно облегчить их для пользователя.

Вычисление коэффициента вариации

Этот показатель представляет собой отношение стандартного отклонения к среднему арифметическому. Полученный результат выражается в процентах.

В Экселе не существует отдельно функции для вычисления этого показателя, но имеются формулы для расчета стандартного отклонения и среднего арифметического ряда чисел, а именно они используются для нахождения коэффициента вариации.

Шаг 1: расчет стандартного отклонения

Стандартное отклонение, или, как его называют по-другому, среднеквадратичное отклонение, представляет собой квадратный корень из дисперсии.

Для расчета стандартного отклонения используется функция СТАНДОТКЛОН.

Начиная с версии Excel 2010 она разделена, в зависимости от того, по генеральной совокупности происходит вычисление или по выборке, на два отдельных варианта: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В.

Синтаксис данных функций выглядит соответствующим образом:

= СТАНДОТКЛОН(Число1;Число2;…) = СТАНДОТКЛОН.Г(Число1;Число2;…)

= СТАНДОТКЛОН.В(Число1;Число2;…)

  1. Для того, чтобы рассчитать стандартное отклонение, выделяем любую свободную ячейку на листе, которая удобна вам для того, чтобы выводить в неё результаты расчетов. Щелкаем по кнопке «Вставить функцию». Она имеет внешний вид пиктограммы и расположена слева от строки формул.

Выполняется активация Мастера функций, который запускается в виде отдельного окна с перечнем аргументов. Переходим в категорию «Статистические» или «Полный алфавитный перечень». Выбираем наименование «СТАНДОТКЛОН.Г» или «СТАНДОТКЛОН.В», в зависимости от того, по генеральной совокупности или по выборке следует произвести расчет. Жмем на кнопку «OK».

Открывается окно аргументов данной функции. Оно может иметь от 1 до 255 полей, в которых могут содержаться, как конкретные числа, так и ссылки на ячейки или диапазоны. Ставим курсор в поле «Число1».

Мышью выделяем на листе тот диапазон значений, который нужно обработать. Если таких областей несколько и они не смежные между собой, то координаты следующей указываем в поле «Число2» и т.д.

Когда все нужные данные введены, жмем на кнопку «OK»

В предварительно выделенной ячейке отображается итог расчета выбранного вида стандартного отклонения.

Шаг 2: расчет среднего арифметического

Среднее арифметическое является отношением общей суммы всех значений числового ряда к их количеству. Для расчета этого показателя тоже существует отдельная функция – СРЗНАЧ. Вычислим её значение на конкретном примере.

  1. Выделяем на листе ячейку для вывода результата. Жмем на уже знакомую нам кнопку «Вставить функцию».

В статистической категории Мастера функций ищем наименование «СРЗНАЧ». После его выделения жмем на кнопку «OK».

Запускается окно аргументов СРЗНАЧ. Аргументы полностью идентичны тем, что и у операторов группы СТАНДОТКЛОН. То есть, в их качестве могут выступать как отдельные числовые величины, так и ссылки.

После того, как их координаты были занесены в поле окна аргументов, жмем на кнопку «OK».

Результат вычисления среднего арифметического выводится в ту ячейку, которая была выделена перед открытием Мастера функций.

Шаг 3: нахождение коэффициента вариации

Теперь у нас имеются все необходимые данные для того, чтобы непосредственно рассчитать сам коэффициент вариации.

  1. Выделяем ячейку, в которую будет выводиться результат. Прежде всего, нужно учесть, что коэффициент вариации является процентным значением. В связи с этим следует поменять формат ячейки на соответствующий.

Это можно сделать после её выделения, находясь во вкладке «». Кликаем по полю формата на ленте в блоке инструментов «Число». Из раскрывшегося списка вариантов выбираем «Процентный».

После этих действий формат у элемента будет соответствующий.

Снова возвращаемся к ячейке для вывода результата. Активируем её двойным щелчком левой кнопки мыши. Ставим в ней знак «=». Выделяем элемент, в котором расположен итог вычисления стандартного отклонения.

Кликаем по кнопке «разделить» (/) на клавиатуре. Далее выделяем ячейку, в которой располагается среднее арифметическое заданного числового ряда.

Как расчитать дисперсию в Excel с помощью функции ДИСП.В

Дисперсия — это мера рассеяния, описывающая сравнительное отклонение между значениями данных и средней величиной. Является наиболее используемой мерой рассеяния в статистике, вычисляемая путем суммирования, возведенного в квадрат, отклонения каждого значения данных от средней величины. Формула для вычисления дисперсии представлена ниже:

s 2 – дисперсия выборки;

xср — среднее значение выборки;

n — размер выборки (количество значений данных),

(xi – xср) — отклонение от средней величины для каждого значения набора данных.

Для лучшего понимания формулы, разберем пример. Я не очень люблю готовку, поэтому занятием этим занимаюсь крайне редко. Тем не менее, чтобы не умереть с голоду, время от времени мне приходится подходить к плите для реализации замысла по насыщению моего организма белками, жирами и углеводами. Набор данных, редставленный ниже, показывает, сколько раз Ренат готовит пищу каждый месяц:

Первым шагом при вычислении дисперсии является определение среднего значения выборки, которое в нашем примере равняется 7,8 раза в месяц. Остальные вычисления можно облегчить с помощью следующей таблицы.

Финальная фаза вычисления дисперсии выглядит так:

Для тех, кто любит производить все вычисления за один раз, уравнение будет выглядеть следующим образом:

Использование метода «сырого счета» (пример с готовкой)

Существует более эффективный способ вычисления дисперсии, известный как метод «сырого счета». Хотя с первого взгляда уравнение может показаться весьма громоздким, на самом деле оно не такое уж страшное. Можете в этом удостовериться, а потом и решите, какой метод вам больше нравится.

— сумма каждого значения данных после возведения в квадрат,

— квадрат суммы всех значений данных.

Не теряйте рассудок прямо сейчас. Позвольте представить все это в виде таблицы, и тогда вы увидите, что вычислений здесь меньше, чем в предыдущем примере.

Как видите, результат получился тот же, что и при использовании предыдущего метода. Достоинства данного метода становятся очевидными по мере роста размера выборки (n).

Расчет дисперсии в Excel

Как вы уже, наверное, догадались, в Excel присутствует формула, позволяющая рассчитать дисперсию. Причем, начиная с Excel 2010 можно найти 4 разновидности формулы дисперсии:

1) ДИСП.В – Возвращает дисперсию по выборке. Логические значения и текст игнорируются.

2) ДИСП.Г — Возвращает дисперсию по генеральной совокупности. Логические значения и текст игнорируются.

3) ДИСПА — Возвращает дисперсию по выборке с учетом логических и текстовых значений.

4) ДИСПРА — Возвращает дисперсию по генеральной совокупности с учетом логических и текстовых значений.

Для начала разберемся в разнице между выборкой и генеральной совокупностью. Назначение описательной статистики состоит в том, чтобы суммировать или отображать данные так, чтобы оперативно получать общую картину, так сказать, обзор. Статистический вывод позволяет делать умозаключения о какой-либо совокупности на основе выборки данных из этой совокупности. Совокупность представляет собой все возможные исходы или измерения, представляющие для нас интерес. Выборка — это подмножество совокупности.

Например, нас интересует совокупность группы студентов одного из Российских ВУЗов и нам необходимо определить средний бал группы. Мы можем посчитать среднюю успеваемость студентов, и тогда полученная цифра будет параметром, поскольку в наших расчетах будет задействована целая совокупность. Однако, если мы хотим рассчитать средний бал всех студентов нашей страны, тогда эта группа будет нашей выборкой.

Разница в формуле расчета дисперсии между выборкой и совокупностью заключается в знаменателе. Где для выборки он будет равняться (n-1), а для генеральной совокупности только n.

Теперь разберемся с функциями расчета дисперсии с окончаниями А, в описании которых сказано, что при расчете учитываются текстовые и логические значения. В данном случае при расчете дисперсии определенного массива данных, где встречаются не числовые значения, Excel будет интерпретировать текстовые и ложные логические значения как равными 0, а истинные логические значения как равными 1.

Итак, если у вас есть массив данных, рассчитать его дисперсию ни составит никакого труда, воспользовавшись одной из перечисленных выше функций Excel.

Как рассчитать дисперсию в Excel?

Дисперсия – квадрат среднеквадратического отклонения и отражает разброс данных относительно среднего.

Рассчитаем дисперсию:  

Скачать файл с примером 

Итак, теперь мы умеем рассчитывать среднеквадратическое отклонение и дисперсию в Excel. Надеемся, полученные знания пригодятся вам в работе.

Точных вам прогнозов!

  • Novo Forecast Lite – автоматический расчет прогноза в Excel.
  • 4analytics – ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition – BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

Novo Forecast PRO – прогнозирование в Excel для больших массивов данных.

Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

СТАНДОТКЛОНА (функция СТАНДОТКЛОНА)

​ были рассчитаны стандартное​«Число»​ координаты были занесены​​ отдельная функция –​​ до 255 полей,​

Описание

​ любую свободную ячейку​ отдельно функции для​ (50% / 33%).​Прежде чем включить в​ доходность актива близка​ доходность и различный​

Синтаксис

​ который содержит по​

​ ссылку на массив.​ нажмите клавишу F2,​

​ ЛОЖЬ, в ссылке.​​ выборке. Стандартное отклонение​ коэффициента вариации менее​ отклонение и среднее​. Из раскрывшегося списка​ в поле окна​СРЗНАЧ​ в которых могут​ на листе, которая​ вычисления этого показателя,​ Это означает, что​

Замечания

​ инвестиционный портфель дополнительный​ к 0, коэффициент​ уровень риска. К​ крайней мере один​И ещё одна​ а затем —​Аргументы, содержащие значение ИСТИНА,​ — это мера​ 33%, то совокупность​

​ арифметическое. Но можно​ вариантов выбираем​

​ аргументов, жмем на​. Вычислим её значение​ содержаться, как конкретные​ удобна вам для​ но имеются формулы​ акции компании А​ актив, финансовый аналитик​

​ вариации может получиться​ примеру, у одного​ заголовок столбца и​ функция.​ клавишу ВВОД. При​ интерпретируются как 1.​

​ того, насколько широко​ чисел однородная. В​ поступить и несколько​«Процентный»​ кнопку​ на конкретном примере.​ числа, так и​

​ того, чтобы выводить​ для расчета стандартного​ имеют лучшее соотношение​ должен обосновать свое​

​ большим. Причем показатель​ актива высокая ожидаемая​ по крайней мере​ДСТАНДОТКЛ (база_данных; поле;​ необходимости измените ширину​ Аргументы, содержащие текст​

​ разбросаны точки данных​ обратном случае её​

​ по-иному, не рассчитывая​. После этих действий​«OK»​

Пример

​Выделяем на листе ячейку​ ссылки на ячейки​ в неё результаты​ отклонения и среднего​ риск / доходность.​ решение. Один из​ значительно меняется при​ доходность, а у​ одну ячейку под​ критерий)​ столбцов, чтобы видеть​ или значение ЛОЖЬ,​ относительно их среднего.​

​ принято характеризовать, как​

​ отдельно данные значения.​

​ формат у элемента​

​ для вывода результата.​

​ или диапазоны. Ставим​

​ расчетов. Щелкаем по​

​ арифметического ряда чисел,​

​ Следовательно, предпочтительнее вложить​

​ незначительном изменении доходности.​

​ заголовком столбца с​

​База данных. Интервал​

​ интерпретируются как 0​

​СТАНДОТКЛОНА(значение1;;…)​ неоднородную.​Выделяем предварительно отформатированную под​

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: