Как интерполировать в excel

Интерполировать в excel - методы интерполяции значений в excel

Как построить график с интерполяцией в Excel

При работе в Excel приходится сталкиваться с интерполяцией графиков различной сложности. Но для первого знакомства с ней рассмотрим сначала самый простой пример.

Если в таблице еще нет всех значений показателей, но уже нужно сформировать по ним отчет и построить графическое представление данных. Тогда на графике мы наблюдаем обрывы в местах, где отсутствуют значения показателей.

Выделите диапазон A1:B4 и выберите инструмент: «Вставка»-«Диаграммы»-«График»-«График с маркерами».

Чтобы устранить обрывы на графике, то есть выполнить интерполяцию в Excel, можем использовать 2 решения для данной задачи:

Оба эти способа рассмотрим далее на конкретных примерах.

Как видно на рисунках сразу отображены 2 варианта опций «линию» и «нулевые значения»

Обратите внимание, как ведет себя график при выборе каждой из них

Что такое интерполяция?

Как мы уже говорили, это общее название способов, позволяющих построить график по точкам. В школе в основном это делают с помощью составления таблицы, выявления точек на графике и примерного построения линий, их соединяющих. Последнее действие делается исходя из соображений похожести исследуемой функции на другие, вид графиков которых нам известен.

Однако есть другие, более сложные и точные способы выполнить поставленную задачу построения графика по точкам. Итак, интерполяция — это фактически «предсказание» поведения функции на конкретном участке, ограниченном известными точками.

Существует схожее понятие, связанное с этой же областью, — экстраполяция. Она представляет собой также предсказание графика функции, но за пределами известных точек графика. При таком способе предсказание делается на основе поведения функции на известном промежутке, и потом эта функция применяется и для неизвестного промежутка. Такой способ очень удобен для практического применения и активно используется, например, в экономике для прогнозирования взлётов и падения на рынке и для предсказания демографической ситуации в стране.

Но мы отошли от основной темы. В следующем разделе разберёмся, какая бывает интерполяция и с помощью каких формул можно произвести эту операцию.

Метод интерполяции: что это такое?

В вычислительной математике так называют способ нахождения промежуточных неизвестных значений функции Y(X) по дискретному набору уже известных.

Интерполяция функции Y(X) может осуществляться только для тех ее аргументов, которые находятся внутри интервала , такого, что известны значения Y(X0) и Y(Xn).

Если X не принадлежит , то можно использовать метод экстраполяции.

В классической постановке интерполяционной задачи требуется найти приближенную аналитическую функцию φ(X), у которой значения в узловых точках Xi совпадают со значениями Y(Xi) исходной таблицы, т. е. соблюдается условие φ (Xi)=Yi (i = 0,1,2,…,n).

Усложнённые виды интерполяции

Есть более интересный, но при этом более сложный способ интерполяции. Его придумал французский математик Жозеф Луи Лагранж. Именно поэтому расчет интерполяции по этому методу назван его именем: интерполяция по методу Лагранжа. Фокус тут вот в чём: если способ, изложенный в предыдущем абзаце, использует для расчета только линейную функцию, то разложение методом Лагранжа предполагает также использование многочленов более высоких степеней. Но не так просто найти сами формулы интерполяции для разных функций. И чем больше точек известно, тем точнее получается формула интерполяции. Но есть и масса других методов.

Существует и более совершенный и приближенный к реальности метод расчета. Формула интерполяции, используемая в нём, представляет собой совокупность многочленов, применение каждого из которых зависит от участка функции. Такой метод называется сплайн-функцией. Кроме того, есть ещё и способы, позволяющие провести такую вещь, как интерполяция функций двух переменных. Тут всего два метода. Среди них билинейная или двойная интерполяция. Этот способ позволяет без труда построить график по точкам в трёхмерном пространстве. Другие методы затрагивать не будем. Вообще, интерполяция — это универсальное называние для всех этих способов построения графиков, но многообразие способов, которыми можно осуществить это действие, заставляет делить их на группы в зависимости от вида функции, которая подлежит этому действию. То есть интерполяция, пример которой мы рассмотрели выше, относится к прямым способам. Есть также обратная интерполяция, которая отличается тем, что позволяет вычислить не прямую, а обратную функцию (то есть x от y). Рассматривать последние варианты мы не будем, так как это достаточно сложно и требует хорошей математической базы знаний.

Перейдём к, пожалуй, одному из важнейших разделов. Из него мы узнаем, как и где обсуждаемая нами совокупность методов применяется в жизни.

Виды интерполяции

Самым простым видом является интерполяция методом ближайшего соседа. С помощью этого способа мы получаем очень приблизительный график, состоящий из прямоугольников. Если вы видели хоть раз объяснение геометрического смысла интеграла на графике, то поймёте, о каком графическом виде идёт речь.

Кроме этого, существуют и другие методы интерполяции. Самые известные и популярные связаны с многочленами. Они более точны и позволяют предсказывать поведение функции при достаточно скудном наборе значений. Первым методом интерполяции, который мы рассмотрим, будет линейная интерполяция многочленами. Это самый простой способ из данной категории, и им наверняка каждый из вас пользовался в школе. Суть его заключается в построении прямых между известными точками. Как известно, через две точки плоскости проходит единственная прямая, уравнение которой можно найти исходя из координат данных точек. Построив эти прямые, мы получаем ломаный график, который худо-бедно, но отражает примерные значения функций и в общих чертах совпадает с реальностью. Так и осуществляется линейная интерполяция.

Билинейная интерполяция

Круг задач, для решения которых можно использовать моделирование посредством функций одной переменной, достаточно ограничен. Поэтому имеет смысл рассмотреть, как используется формула двойной интерполяции в Excel. Примеры могут быть самыми разными. Например: имеется таблица (см. ниже).

A

B

C

D

E

F

G

1

200

400

600

800

1000

Пролет

2

20

10

20

160

210

260

3

30

40

60

190

240

290

4

40

130

180

230

280

330

5

50

180

230

280

330

380

6

60

240

290

340

390

440

7

70

310

360

410

460

510

8

80

390

440

490

540

590

9

90

750

800

850

900

950

10

Высота

278

Требуется вычислить давление ветра при величине пролета 300 м на высоте 25 м.

В таблицу добавляют новые записи так, как представлено на рисунке (см. ниже).

Как видно, в нее добавлены ячейки для высоты и пролета в J1 и J2.

Путем обратной последовательной подстановки «собирают» мегаформулу, необходимую для нахождения давления ветра при конкретных параметрах. Для этого:

  • копируют текст формулы из ячейки с адресом J17 в ячейку J19;
  • заменяют в формуле ссылку на J15 значением в ячейке J15: J7+(J8-J7)*J11/J13;
  • повторяют эти действия до получения необходимой формулы.

Интерполяция (координат)

Есть сетка координат на карте (изображении).
На ней есть некоторые известные опорные точки (n>3), имеющие по два значения x,y — координаты в пикселах, и координаты в метрах.
Необходимо найти промежуточные значения координат в метрах, зная координаты в пикселах.
Линейная интерполяция не подходит — слишком большая погрешность за пределами линии.
Вот так: (Xc — коорд. в метрах по ох, Xp — коорд. в пикселах по ох, Xc3 — искомое значение по ох)
Xc3= (Xc1-Xc2)/(Xp1-Xp2)*(Xp3-Xp2)+Xc2
Yc3= (Yc1-Yc2)/(Yp1-Yp2)*(Yp3-Yp2)+Yc2

Как найти такую же формулу для нахождения Xc и Yc, учитывая не две (как тут), а N известных опорных точек?

Joka fern lowd

Судя по выписанным формулам, оси систем координат в пикселах и в метрах совпадают?
То есть независимо интерполируется Xp -> Xc и независимо Yp -> Yc. Если нет, то надо использовать двумерную интерполяцию Xp,Yp->Xc и Xp,Yp->Yc, что несколько усложняет задачу.
Далее подразумевается, что координаты Xp и Xc связаны некоторой зависимостью.
Если характер зависимости известен (или предполагается, например, предполагаем, что Xc=a*Xp^2+b*Xp+c), то можно получить параметры этой зависимости (для приведенной зависимости a, b, c) с помощью регрессионного анализа (Метод наименьших квадратов) . В этом методе, если задаться определенной зависимостью Xc(Xp) можно получить формулу для параметров зависимости от опорных данных. Этот метод позволяет, в частности, найти и линейную зависимость, наилучшим образом удовлетворяющую данному набору данных.
Недостаток: В этом методе координаты Xc, полученные по данным опорных точек Xp, могут отличаться от заданных. Как например, аппроксимационная прямая проведенная по экспериментальным точкам, не проходит точно через сами эти точки.
Если же требуется точное соответствие и характер зависимости неизвестен, нужно использовать интерполяционные методы. Простейшим математически является интерполяционный полином Лагранжа, точно проходящий через опорные точки. Однако в силу высокой степени этого полинома при большом числе опорных точек и плохого качества интерполяции, лучше его не использовать. Преимуществом является сравнительно простая формула.
Лучше использовать интерполяцию сплайнами. Суть этого метода в том, что на каждом участке между двумя соседними точками, исследуемая зависимость интерполируется полиномом, а в точках сшивки двух интервалов записываются условия гладкости. Преимуществом этого метода является качество интерполяция. Недостатками — практически невозможно вывести общую формулу, приходится находить коэффициенты полинома на каждом участке алгоритмически. Другим недостатком является сложность обобщения на двумерную интерполяцию.

Интерполяция. Введение. Общая постановка задачи

При решении различных практических задач результаты исследований оформляются в виде таблиц, отображающих зависимость одной или нескольких измеряемых величин от одного определяющего параметра (аргумента). Такого рода таблицы представлены обычно в виде двух или более строк (столбцов) и используются для формирования математических моделей.

Таблично заданные в математических моделях функции обычно записываются в таблицы вида:

Y1
(X)

Y(Х0
)

Y(Х1
)

Y(Хn
)

Ym
(X)

Y(Х0
)

Y(Х1
)

Y(Хn
)

Ограниченность информации, представленной такими таблицами, в ряде случаев требует получить значения функций Y
j
(X) (j=1,2,…,m)
в точкахХ
, не совпадающих с узловыми точками таблицыХ
i
(i=0,1,2,…,n)
. В таких случаях необходимо определить некоторое аналитическое выражениеφ
j
(Х)
для вычисления приближенных значений исследуемой функцииY
j
(X)
в произвольно задаваемых точкахХ
. Функцияφ
j
(Х)
используемая для определения приближенных значений функцииY
j
(X)
называется аппроксимирующей функцией (от латинскогоapproximo
— приближаюсь). Близость аппроксимирующей функцииφ
j
(Х)
к аппроксимируемой функцииY
j
(X)
обеспечивается выбором соответствующего алгоритма аппроксимации.

Все дальнейшие рассмотрения и выводы мы будем делать для таблиц, содержащих исходные данные одной исследуемой функции (т. е. для таблиц с m=1
).

Способ 3: интерполяция графика с помощью функции

Произвести интерполяцию графика можно также с помощью специальной функции НД. Она возвращает неопределенные значения в указанную ячейку.

Можно сделать даже проще, не запуская Мастер функций
, а просто с клавиатуры вбить в пустую ячейку значение «#Н/Д»
без кавычек. Но это уже зависит от того, как какому пользователю удобнее.

Как видим, в программе Эксель можно выполнить интерполяцию, как табличных данных, используя функцию ПРЕДСКАЗ
, так и графика. В последнем случае это осуществимо с помощью настроек графика или применения функции НД
, вызывающей ошибку «#Н/Д»
. Выбор того, какой именно метод использовать, зависит от постановки задачи, а также от личных предпочтений пользователя.

Существуют случаи, когда требуется узнать результаты вычисления функции за пределами известной области. Особенно актуален данный вопрос для процедуры прогнозирования. В Экселе есть несколько способов, с помощью которых можно совершить данную операцию. Давайте рассмотрим их на конкретных примерах.

Способ 2: экстраполяция для графика

Выполнить процедуру экстраполяции для графика можно путем построения линии тренда.

  1. Прежде всего, строим сам график. Для этого курсором при зажатой левой кнопке мыши выделяем всю область таблицы, включая аргументы и соответствующие значения функции. Затем, переместившись во вкладку «Вставка»
    , кликаем по кнопке «График»
    . Этот значок расположен в блоке «Диаграммы»
    на ленте инструментов. Появляется перечень доступных вариантов графиков. Выбираем наиболее подходящий из них на свое усмотрение.

После того, как график построен, удаляем из него дополнительную линию аргумента, выделив её и нажав на кнопку Delete
на клавиатуре компьютера.

Далее нам нужно поменять деления горизонтальной шкалы, так как в ней отображаются не значения аргументов, как нам того нужно. Для этого, кликаем правой кнопкой мыши по диаграмме и в появившемся списке останавливаемся на значении «Выбрать данные»
.

В запустившемся окне выбора источника данных кликаем по кнопке «Изменить»
в блоке редактирования подписи горизонтальной оси.

Открывается окно установки подписи оси. Ставим курсор в поле данного окна, а затем выделяем все данные столбца «X»
без его наименования. Затем жмем на кнопку «OK»
.

После возврата к окну выбора источника данных повторяем ту же процедуру, то есть, жмем на кнопку «OK»
.

Теперь наш график подготовлен и можно, непосредственно, приступать к построению линии тренда. Кликаем по графику, после чего на ленте активируется дополнительный набор вкладок – «Работа с диаграммами»
. Перемещаемся во вкладку «Макет»
и жмем на кнопку «Линия тренда»
в блоке «Анализ»
. Кликаем по пункту «Линейное приближение»
или «Экспоненциальное приближение»
.

Линия тренда добавлена, но она полностью находится под линией самого графика, так как мы не указали значение аргумента, к которому она должна стремиться. Чтобы это сделать опять последовательно кликаем по кнопке «Линия тренда»
, но теперь выбираем пункт «Дополнительные параметры линии тренда»
.

Запускается окно формата линии тренда. В разделе «Параметры линии тренда»
есть блок настроек «Прогноз»
. Как и в предыдущем способе, давайте для экстраполяции возьмем аргумент 55
. Как видим, пока что график имеет длину до аргумента 50
включительно. Получается, нам нужно будет его продлить ещё на 5
единиц. На горизонтальной оси видно, что 5 единиц равно одному делению. Значит это один период. В поле «Вперед на»
вписываем значение «1»
. Жмем на кнопку «Закрыть»
в нижнем правом углу окна.

Как видим, график был продлен на указанную длину с помощью линии тренда.

Итак, мы рассмотрели простейшие примеры экстраполяции для таблиц и для графиков. В первом случае используется функция ПРЕДСКАЗ
, а во втором – линия тренда. Но на основе этих примеров можно решать и гораздо более сложные задачи прогнозирования.

Многие из нас сталкивались с непонятными терминами в разных науках. Но находится очень мало людей, которых не пугают непонятные слова, а наоборот, приободряют и заставляют всё больше углубиться в изучаемый предмет. Сегодня речь пойдёт о такой вещи, как интерполяция. Это способ построения графиков по известным точкам, позволяющий с минимальным количеством информации о функции предсказать её поведение на конкретных участках кривой.

Перед тем как перейти к сути самого определения и рассказать о нём подробнее, немного углубимся в историю.

Применение интерполяции в Microsoft Excel

Бывает ситуация, когда в массиве известных значений нужно найти промежуточные результаты. В математике это называется интерполяцией. В Excel данный метод можно применять как для табличных данных, так и для построения графиков. Разберем каждый из этих способов.

Использование интерполяции

Главное условие, при котором можно применять интерполяцию – это то, что искомое значение должно быть внутри массива данных, а не выходить за его предел. Например, если мы имеем набор аргументов 15, 21 и 29, то при нахождении функции для аргумента 25 мы можем использовать интерполяцию. А для поиска соответствующего значения для аргумента 30 – уже нет. В этом и является главное отличие этой процедуры от экстраполяции.

Способ 1: интерполяция для табличных данных

Прежде всего, рассмотрим применения интерполяции для данных, которые расположены в таблице. Для примера возьмем массив аргументов и соответствующих им значений функции, соотношение которых можно описать линейным уравнением. Эти данные размещены в таблице ниже. Нам нужно найти соответствующую функцию для аргумента 28. Сделать это проще всего с помощью оператора ПРЕДСКАЗ.

  1. Выделяем любую пустую ячейку на листе, куда пользователь планирует выводить результат от проведенных действий. Далее следует щелкнуть по кнопке «Вставить функцию», которая размещена слева от строки формул.

  • X;
  • Известные значения y;
  • Известные значения x.

В первое поле нам просто нужно вручную с клавиатуры вбить значения аргумента, функцию которого следует отыскать. В нашем случае это 28.

В поле «Известные значения y» нужно указать координаты диапазона таблицы, в котором содержатся значения функции. Это можно сделать вручную, но гораздо проще и удобнее установить курсор в поле и выделить соответствующую область на листе.

Аналогичным образом устанавливаем в поле «Известные значения x» координаты диапазона с аргументами.

Способ 2: интерполяция графика с помощью его настроек

Процедуру интерполяции можно применять и при построении графиков функции. Актуальна она в том случае, если в таблице, на основе которой построен график, к одному из аргументов не указано соответствующее значение функции, как на изображении ниже.

  1. Выполняем построение графика обычным методом. То есть, находясь во вкладке «Вставка», выделяем табличный диапазон, на основе которого будет проводиться построение. Щелкаем по значку «График», размещенному в блоке инструментов «Диаграммы». Из появившегося списка графиков выбираем тот, который считаем более уместным в данной ситуации.

Как видим, график скорректирован, а разрыв с помощью интерполяции удален.

Способ 3: интерполяция графика с помощью функции

Произвести интерполяцию графика можно также с помощью специальной функции НД. Она возвращает неопределенные значения в указанную ячейку.

  1. После того, как график построен и отредактирован, так как вам нужно, включая правильную расстановку подписи шкалы, остается только ликвидировать разрыв. Выделяем пустую ячейку в таблице, из которой подтягиваются данные. Жмем на уже знакомый нам значок «Вставить функцию».

Можно сделать даже проще, не запуская Мастер функций, а просто с клавиатуры вбить в пустую ячейку значение «#Н/Д» без кавычек. Но это уже зависит от того, как какому пользователю удобнее.

Как видим, в программе Эксель можно выполнить интерполяцию, как табличных данных, используя функцию ПРЕДСКАЗ, так и графика. В последнем случае это осуществимо с помощью настроек графика или применения функции НД, вызывающей ошибку «#Н/Д». Выбор того, какой именно метод использовать, зависит от постановки задачи, а также от личных предпочтений пользователя.

Мы рады, что смогли помочь Вам в решении проблемы.

Способ 3: интерполяция графика с помощью функции

Произвести интерполяцию графика можно также с помощью специальной функции НД. Она возвращает неопределенные значения в указанную ячейку.

  1. После того, как график построен и отредактирован, так как вам нужно, включая правильную расстановку подписи шкалы, остается только ликвидировать разрыв. Выделяем пустую ячейку в таблице, из которой подтягиваются данные. Жмем на уже знакомый нам значок «Вставить функцию».

Открывается Мастер функций. В категории «Проверка свойств и значений» или «Полный алфавитный перечень» находим и выделяем запись «НД». Жмем на кнопку «OK».

У данной функции нет аргумента, о чем и сообщает появившееся информационное окошко. Чтобы закрыть его просто жмем на кнопку «OK».

После этого действия в выбранной ячейке появилось значение ошибки «#Н/Д», но зато, как можно наблюдать, обрыв графика был автоматически устранен.

Можно сделать даже проще, не запуская Мастер функций, а просто с клавиатуры вбить в пустую ячейку значение «#Н/Д» без кавычек. Но это уже зависит от того, как какому пользователю удобнее.

Как видим, в программе Эксель можно выполнить интерполяцию, как табличных данных, используя функцию ПРЕДСКАЗ, так и графика. В последнем случае это осуществимо с помощью настроек графика или применения функции НД, вызывающей ошибку «#Н/Д». Выбор того, какой именно метод использовать, зависит от постановки задачи, а также от личных предпочтений пользователя.

Табличный процессор Excel позволяет не только быстро производить различные вычисления, но и решать достаточно сложные задачи. Например, с его помощью можно осуществлять математическое моделирование на основе набора дискретных значений той или иной функции, в том числе находить промежуточное значение функций методом интерполяции. В Excel для этого предусмотрены различные инструменты, пользоваться которыми научит эта статья.

Графичeский мeтод: подготовка

Интeрполяция в Excel, примeр которой прeдставлeн вышe, далeко нe eдинствeнный способ, позволяющий выяснить промeжуточныe нeизвeстныe значeния функции Y(X) по дискрeтному набору ужe извeстных. В частности, можeт быть примeнeн графичeский мeтод. Он можeт оказаться полeзным, eсли в таблицe к одному из аргумeнтов нe указано соотвeтствующee значeниe функции, как в той, что прeдставлeна нижe (см. ячeйку с адрeсом B9).

Интeрполяция в Excel в таком случаe начинаeтся с построeния графика. Для этого:

  • во вкладкe «Вставка» выдeляют табличный диапазон;
  • в блокe инструмeнтов «Диаграммы» выбирают значок «График»;
  • в появившeмся спискe выбирают тот, который лучшe подходит для рeшeния конкрeтной задачи.

Так как в ячeйкe B9 пусто, график получился разорванный. Кромe того, на нeм присутствуeт дополнитeльная линия X, в которой нeт нeобходимости, а на горизонтальной оси вмeсто значeний аргумeнта указаны пункты по порядку.

Что такое аппроксимация в Excel?

Ведь аппроксимация является, по сути, упрощением исходных данных, а упрощенный вариант исследовать легче. Главный инструмент, с помощью которого проводится сглаживания в Excel – это построение линии тренда. Суть состоит в том, что на основе уже имеющихся показателей достраивается график функции на будущие периоды.

Как посчитать аппроксимацию в Excel?

  1. Создайте диаграмму (график).
  2. Выделите линию функции на графике и нажмите правую кнопку мыши, выберите «Добавить линию тренда»
  3. Выберите тип аппроксимации во вкладке «Тип» в откурывшемся диалоговом окне «Линия тренда»
  4. На вкладке «Параметры» — прогностические параметры, показывать уравнение на графике или нет

Как называется в Excel график линейной аппроксимации?

Линия тренда в Excel – это график аппроксимирующей функции. Для чего он нужен – для составления прогнозов на основе статистических данных. С этой целью необходимо продлить линию и определить ее значения. Если R2 = 1, то ошибка аппроксимации равняется нулю.

Где находится линия тренда в Excel?

Щелкните правой кнопкой мыши по ряду данных и в контекстном меню нажмите Добавить линию тренда (Add Trendline). Перейдите на вкладку Параметры линии тренда (Trend/Regression Type) и выберите Линейная (Linear).

Как экстраполировать данные в Excel?

Выполнить процедуру экстраполяции для графика можно путем построения линии тренда. Прежде всего, строим сам график. Для этого курсором при зажатой левой кнопке мыши выделяем всю область таблицы, включая аргументы и соответствующие значения функции. Затем, переместившись во вкладку «Вставка», кликаем по кнопке «График».

Как построить полином в Excel?

Полином — это степенная функция y=ax2+bx+c (полином второй степени) и y=ax3+bx2+cx+d (полином третей степени) и т.…Есть 3 способа расчета значений полинома в Excel:

Как сделать аппроксимацию?

Чтобы приступить к аппроксимации кривой ваших экспериментальных данных в Excel 2003:

  1. Создайте диаграмму (график).
  2. Выделите линию функции на графике и нажмите правую кнопку мыши, выберите «Добавить линию тренда»
  3. Выберите тип аппроксимации во вкладке «Тип» в откурывшемся диалоговом окне «Линия тренда»

Как сделать уравнение по графику в Excel?

Кликаете правой кнопкой мыши на линии тренда, выбираете «Формат линии тренда». В открывшемся окне ставите галочку «Показывать уравнение на диаграмме».

Как в Excel сделать прогноз?

Выделите оба ряда данных. Совет: Если выделить ячейку в одном из рядов, Excel автоматически выделит остальные данные. На вкладке Данные в группе Прогноз нажмите кнопку Лист прогноза. В окне Создание прогноза выберите график или гограмму для визуального представления прогноза.

Что показывает уравнение линии тренда?

Уравнение Trendline — это формула, которая находит линию, которая наилучшим образом соответствует точкам данных. Значение R-squared измеряет надежность трендовой линии : чем ближе R2 к 1, тем лучше линия тренда соответствует данным.

Для чего служит линия тренда?

Линии тренда — элемент аппарата технического анализа, используемый для выявления тенденций изменения цен на различных видах бирж. Линии тренда представляют собой геометрическое отображение средних значений анализируемых показателей, полученное с помощью какой-либо математической функции.

Как рассчитать прогноз?

Рассчитать прогноз по методу скользящей средней очень просто. Для этого берём среднее значение, например, средние продажи за последние 3 месяца и умножаем на коэффициент сезонности к 3-м месяцам — и прогноз на месяц готов.

Как сделать интерполяцию функции в Excel?

Выделите диапазон A1:B4 и выберите инструмент: «Вставка»-«Диаграммы»-«График»-«График с маркерами». Чтобы устранить обрывы на графике, то есть выполнить интерполяцию в Excel, можем использовать 2 решения для данной задачи: Изменить параметры в настройках графика выбрав соответствующую опцию.

Что такое метод экстраполяции?

Экстраполяция — это метод научного исследования, который основан на распространении прошлых и настоящих тенденций, закономерностей, связей на будущее развитие объекта прогнозирования. Методы экстраполяции наиболее распространенные в группе формализованных.

Линейная интерполяцияСодержание а также Линейная интерполяция между двумя известными точками править
После того как диаграмма построена, Вы всегда можете внести изменения и добавления в ее текст. Для этого нужно в режиме редактирования диаграммы нажать левую клавишу мыши на панели инструментов для вызова диалога форматирования необходимого объекта, где можно добавить необходимые надписи.

3.

Способ 1: интерполяция для табличных данных

Прежде всего, рассмотрим применения интерполяции для данных, которые расположены в таблице. Для примера возьмем массив аргументов и соответствующих им значений функции, соотношение которых можно описать линейным уравнением. Эти данные размещены в таблице ниже. Нам нужно найти соответствующую функцию для аргумента 28. Сделать это проще всего с помощью оператора ПРЕДСКАЗ.

  1. Выделяем любую пустую ячейку на листе, куда пользователь планирует выводить результат от проведенных действий. Далее следует щелкнуть по кнопке «Вставить функцию», которая размещена слева от строки формул.
  2. Активируется окошко Мастера функций. В категории «Математические» или «Полный алфавитный перечень» ищем наименование «ПРЕДСКАЗ». После того, как соответствующее значение найдено, выделяем его и щелкаем по кнопке «OK».

В первое поле нам просто нужно вручную с клавиатуры вбить значения аргумента, функцию которого следует отыскать. В нашем случае это 28.

В поле «Известные значения y» нужно указать координаты диапазона таблицы, в котором содержатся значения функции. Это можно сделать вручную, но гораздо проще и удобнее установить курсор в поле и выделить соответствующую область на листе.

Аналогичным образом устанавливаем в поле «Известные значения x» координаты диапазона с аргументами.

После того, как все нужные данные введены, жмем на кнопку «OK».

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: