Как найти процент выполнения плана формула excel

Как сделать разницу в процентах в excel: как умножить и сделать расчет по кредиту, готовая формула для работы в эксель, включение скрытой функции разданат, общие сведения

Особенности использования СТАНДОТКЛОН.В, СТАНДОТКЛОН.Г, СТАНДОТКЛОНА и СТАНДОТКЛОНПА

Функции СТАНДОТКЛОНА И СТАНДОТКЛОНПА имеют идентичную синтаксическую запись типа:

ФУНКЦИЯ (значение1; ;…)

Описание:

  • ФУНКЦИЯ – одна из двух рассмотренных выше функций;
  • значение1
    – обязательный аргумент, характеризующий одно из значений выборки (либо генеральной совокупности);
  • – необязательный аргумент, характеризующий второе значение исследуемого диапазона.

Примечания:

  1. В качестве аргументов функций могут быть переданы имена, числовые значения, массивы, ссылки на диапазоны числовых данных, логические значения и ссылки на них.
  2. Обе функции игнорируют пустые значения и текстовые данные, содержащиеся в диапазоне переданных данных.
  3. Функции возвращают код ошибки #ЗНАЧ!, если в качестве аргументов были переданы значения ошибок или текстовые данные, которые не могут быть преобразованы в числовые значения.

Функции СТАНДОТКЛОН.В и СТАНДОТКЛОН.Г имеют следующую синтаксическую запись:

ФУНКЦИЯ(число1;;…)

Описание:

  • ФУНКЦИЯ – любая из функций СТАНДОТКЛОН.В или СТАНДОТКЛОН.Г;
  • число1
    – обязательный аргумент, характеризующий числовое значение, взятое из выборки или всей генеральной совокупности;
  • число2 – необязательный аргумент, характеризующий второе числовое значение исследуемого диапазона.

Примечание: обе функции не включают в процесс вычисления числа, представленные в виде текстовых данных, а также логические значения ИСТИНА и ЛОЖЬ.

Примечания:

  1. Стандартное отклонение широко используется в статистических расчетах, когда нахождение среднего значения диапазона величин не дает верное представление о распределении данных. Оно демонстрирует принцип распределения величин относительно среднего значения в конкретной выборке или всей последовательности целиком. В Примере 1 будет наглядно рассмотрено практическое применение данного статистического параметра.
  2. Функции СТАНДОТКЛОНА и СТАНДОТКЛОН.В следует использовать для анализа только части генеральной совокупности и производят расчет по первой формуле, а СТАНДОТКЛОН.Г и СТАНДОТКЛОНПА должны принимать на вход данные о всей генеральной совокупности и производят расчет по второй формуле.
  3. В Excel содержатся встроенные функции СТАНДОТКЛОН и СТАНДОТКЛОНП, оставленные для совместимости с более старыми версиями Microsoft Office. Они могут быть не включены в более поздние версии программы, поэтому их использование не рекомендуется.
  4. Для нахождения стандартного отклонения используются две распространенные формулы: S=√((∑_(i=1)^n▒(x_i-x_ср)^2)/(n-1)) и S=√((∑_(i=1)^n▒(x_i-x_ср)^2)/n), где:
  • S – искомое значение стандартного отклонения;
  • n – рассматриваемый диапазон значений (выборка);
  • x_i – отдельно взятое значение из выборки;
  • x_ср – среднее арифметическое значение для рассматриваемого диапазона.

Увеличение на процент значений в столбце

Если вы хотите сделать изменения для всего столбца с данными, не создавая для этого новые столбцы и используя существующий, вам необходимо сделать 5 шагов:

  1. Заполняем первый столбец данными.
  2. Записываем формулу в свободной ячейке.
  3. Копируем ячейку с формулой.
  4. Выделяем область с будущими изменениями, нажатием мышки вызываем меню и выбираем Paste Special.
  5. Появляется окно, где нам нужен пункт Values в разделе Paste и пункт Multiply в разделе Operation. Подтверждаем выбор.

Теперь мы видим значения, ставшие больше на 20%. Используя этот способ, вы можете проделывать различные операции на определенный процент, вписывая его в свободную ячейку.

Сегодня был обширный урок. Я надеюсь, вы прояснили для себя, как в экселе посчитать проценты. И, несмотря на то, что подобные вычисления для многих не очень любимы, вы будете делать их с легкостью. Как в экселе посчитать проценты

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности
    ).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение
. Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего
:

Наконец, чтобы вычислить дисперсию
, каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия мм 2 .

Таким образом, дисперсия составляет 21704 мм 2 .

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

Мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Пример: среднее абсолютное отклонение относительно медианы

Начните с того же набора данных, что и в первом примере:

1, 2, 2, 3, 5, 7, 7, 7, 7, 9.

Медиана набора данных равна 6. В следующей таблице мы показываем детали расчета среднего абсолютного отклонения от медианы.

Значение данных Отклонение от медианы Абсолютное значение отклонения
1 1-6 = -5 | -5 | = 5
2 2-6 = -4 | -4 | = 4
2 2-6 = -4 | -4 | = 4
3 3-6 = -3 | -3 | = 3
5 5-6 = -1 | -1 | = 1
7 7 – 6 = 1 | 1 | = 1
7 7 – 6 = 1 | 1 | = 1
7 7 – 6 = 1 | 1 | = 1
7 7 – 6 = 1 | 1 | = 1
9 9 – 6 = 3 | 3 | = 3
Сумма абсолютных отклонений: 24

Снова делим сумму на 10 и получить среднее среднее отклонение от медианы как 24/10 = 2,4.

Пример: Среднее абсолютное отклонение от медианы

Начните с того же набора данных, что и раньше:

1, 2, 2, 3, 5, 7, 7, 7, 7, 9.

На этот раз мы обнаруживаем, что режим этого набора данных равен 7. В следующей таблице мы показываем детали вычисления среднего абсолютного отклонения для режима.

Данные Отклонение от режима Абсолютное значение отклонения
1 1-7 = -6 | -5 | = 6
2 2-7 = -5 | -5 | = 5
2 2-7 = -5 | -5 | = 5
3 3-7 = -4 | -4 | = 4
5 5-7 = -2 | -2 | = 2
7 7-7 = 0 | 0 | = 0
7 7-7 = 0 | 0 | = 0
7 7-7 = 0 | 0 | = 0
7 7-7 = 0 | 0 | = 0
9 9-7 = 2 | 2 | = 2
Сумма абсолютных отклонений: 22

Делим сумму абсолютных отклонений и видим, что у нас есть среднее абсолютное отклонение о режиме 22/10 = 2.2.

Быстрые факты

Есть несколько основных свойств, касающихся средних абсолютных отклонений

  • Среднее абсолютное отклонение от медианы всегда меньше или равно среднему абсолютному отклонению около значение.
  • Стандартное отклонение больше или равно среднему абсолютному отклонению относительно среднего.
  • Среднее абсолютное отклонение иногда сокращается до MAD. К сожалению, это может быть неоднозначным, поскольку MAD может альтернативно относиться к среднему абсолютному отклонению.
  • Среднее абсолютное отклонение для нормального распределения примерно в 0,8 раза превышает размер стандартного отклонения.

Распространенное использование

Среднее абсолютное отклонение имеет несколько применений. Первое применение состоит в том, что эту статистику можно использовать для обучения некоторым идеям, лежащим в основе стандартного отклонения. Среднее абсолютное отклонение относительно среднего намного легче вычислить, чем стандартное отклонение. Это не требует, чтобы мы возводили отклонения в квадрат, и нам не нужно находить квадратный корень в конце нашего расчета. Кроме того, среднее абсолютное отклонение более интуитивно связано с разбросом набора данных, чем стандартное отклонение. Вот почему иногда сначала изучают среднее абсолютное отклонение, прежде чем вводить стандартное отклонение.

Некоторые зашли так далеко, что утверждают, что стандартное отклонение должно быть заменено средним абсолютным отклонением

Хотя стандартное отклонение важно для научных и математических приложений, оно не так интуитивно понятно, как среднее абсолютное отклонение. Для повседневных приложений среднее абсолютное отклонение – более ощутимый способ измерить разброс данных

Коэффициент вариации

Все показатели, рассмотренные выше, имеют привязку к масштабу исходных данных и не позволяют получить образное представление о вариации анализируемой совокупности. Для получения относительной меры разброса данных используют коэффициент вариации
, который рассчитывается путем деления среднеквадратичного отклонения
на среднее арифметическое
. Формула коэффициента вариации проста:

Для расчета коэффициента вариации в Excel нет готовой функции, что не есть большая проблема. Расчет можно произвести простым делением стандартного отклонения на среднее значение. Для этого в строке формул пишем:

СТАНДОТКЛОН.Г()/СРЗНАЧ()

В скобках указывается диапазон данных. При необходимости используют среднее квадратичное отклонение по выборке (СТАНДОТКЛОН.В).

Коэффициент вариации обычно выражается в процентах, поэтому ячейку с формулой можно обрамить процентным форматом. Нужная кнопка находится на ленте на вкладке «Главная»:

Изменить формат также можно, выбрав из контекстного меню после выделения нужной ячейки и нажатия правой кнопкой мышки.

Коэффициент вариации, в отличие от других показателей разброса значений, используется как самостоятельный и весьма информативный индикатор вариации данных. В статистике принято считать, что если коэффициент вариации менее 33%, то совокупность данных является однородной, если более 33%, то – неоднородной. Эта информация может быть полезна для предварительного описания данных и определения возможностей проведения дальнейшего анализа. Кроме того, коэффициент вариации, измеряемый в процентах, позволяет сравнивать степень разброса различных данных независимо от их масштаба и единиц измерений. Полезное свойство.

План-фактный анализ, пример проверки результативности

Первый способ проведения изысканий основывается на результативности деятельности проекта. А также на конкретно составленном плане движения финансовых потоков. Представленный образец будет схематичным и затронет лишь некоторые показатели, чтобы продемонстрировать сам принцип.

Сфера проверки

Единица измерения значения

Запланированный результат на 2019 год

Текущий результат по итогам 2017 года

Наличие расхождений в абсолютном значении

Процент отклонения, то есть, относительный уровень

Полный объем закупленной для реализации продукции

Тысячи рублей РФ

284 426

289 312

4 886

1,7%

Количество сотрудников осуществляющих работу на предприятии за отчетный период

Человек

300

330

30

10%

Заработная плата, выданная работникам. Устанавливается усреднений размер для упрощения

Тысяч рублей на одного человека

341

354

12

3,6%

Иные затраты материального характера необходимые для ведения хозяйственной деятельности

Тысяч рублей

101 970

97 650

-4 320

-4,2%

Прибыль за отчетный период без учета конкретного источника

Тысяч рублей

40 462

43 736

3094

7,1%

Рентабельность по общим показателям

В процентах

13,5

13

-0.5

-4%

Расчет показателей вариации в Excel

Распространенное использование

Среднее абсолютное отклонение имеет несколько применений. Первое применение состоит в том, что эту статистику можно использовать для обучения некоторым идеям, лежащим в основе стандартного отклонения. Среднее абсолютное отклонение относительно среднего намного легче вычислить, чем стандартное отклонение. Это не требует, чтобы мы возводили отклонения в квадрат, и нам не нужно находить квадратный корень в конце нашего расчета. Кроме того, среднее абсолютное отклонение более интуитивно связано с разбросом набора данных, чем стандартное отклонение. Вот почему иногда сначала изучают среднее абсолютное отклонение, прежде чем вводить стандартное отклонение.

Некоторые зашли так далеко, что утверждают, что стандартное отклонение должно быть заменено средним абсолютным отклонением

Хотя стандартное отклонение важно для научных и математических приложений, оно не так интуитивно понятно, как среднее абсолютное отклонение. Для повседневных приложений среднее абсолютное отклонение – более ощутимый способ измерить разброс данных

Пример функции СТАНДОТКЛОН.Г в Excel

Пример 3.
Определить эффективность подготовки студентов к экзамену для всех групп университета.

Примечание: в отличие от предыдущего примера, будет анализироваться не выборка (несколько групп), а все число студентов – генеральная совокупность. Студенты, не сдавшие экзамен, не учтены.

Заполним таблицу данных:

Для оценки эффективности будем оперировать двумя показателями: средняя оценка и разброс значений. Для определения среднего арифметического используем функцию:

СРЗНАЧ(B2:B21)

Для определения отклонения введем формулу:

СТАНДОТКЛОН.Г(B2:B21)

В результате получим:

Полученные данные свидетельствует об успеваемости немного ниже среднего (

Как посчитать проценты от суммы в Excel

Рассмотрим пример, когда нам необходимо посчитать проценты от суммы по каждой позиции. Пусть у нас есть таблица продаж некоторых видов продуктов с итоговой суммой. Нам необходимо посчитать проценты от суммы по каждому виду товара, то есть посчитать в процентном соотношении сколько выручки приносит каждый товар от общей суммы.

Как посчитать проценты в Excel – Исходные данные для расчета процентов от суммы

Для этого проделываем следующее:

  • В ячейке C2 вводим следующую формулу: =B2/$B$9 . Для ячейки B9 мы используем абсолютную ссылку (со знаками $), чтобы она была неизменной, а для ячейки B2 – относительную, чтобы она изменялась при копировании формулы в другие ячейки.
  • Используя маркер заполнения копируем эту формулу расчета процентов от суммы для всех значений.
  • Для отображения результатов в формате процентов, на вкладке « Главная » в группе « Число », задаем «Процентный формат» с двумя знаками после запятой.

В результате мы получаем следующие значения процентов от суммы:

Как посчитать проценты в Excel – Проценты от суммы в Excel

Быстрые факты

Есть несколько основных свойств, касающихся средних абсолютных отклонений

  • Среднее абсолютное отклонение от медианы всегда меньше или равно среднему абсолютному отклонению около значение.
  • Стандартное отклонение больше или равно среднему абсолютному отклонению относительно среднего.
  • Среднее абсолютное отклонение иногда сокращается до MAD. К сожалению, это может быть неоднозначным, поскольку MAD может альтернативно относиться к среднему абсолютному отклонению.
  • Среднее абсолютное отклонение для нормального распределения примерно в 0,8 раза превышает размер стандартного отклонения.

Среднее значение по условию

Условием для нахождения среднего арифметического может быть числовой критерий или текстовый. Будем использовать функцию: =СРЗНАЧЕСЛИ().

Найти среднее арифметическое чисел, которые больше или равны 10.

Результат использования функции СРЗНАЧЕСЛИ по условию «>=10»:

Третий аргумент – «Диапазон усреднения» — опущен. Во-первых, он не обязателен. Во-вторых, анализируемый программой диапазон содержит ТОЛЬКО числовые значения. В ячейках, указанных в первом аргументе, и будет производиться поиск по прописанному во втором аргументе условию.

Внимание! Критерий поиска можно указать в ячейке. А в формуле сделать на нее ссылку

Найдем среднее значение чисел по текстовому критерию. Например, средние продажи товара «столы».

Функция будет выглядеть так: =СРЗНАЧЕСЛИ($A$2:$A$12;A7;$B$2:$B$12). Диапазон – столбец с наименованиями товаров. Критерий поиска – ссылка на ячейку со словом «столы» (можно вместо ссылки A7 вставить само слово «столы»). Диапазон усреднения – те ячейки, из которых будут браться данные для расчета среднего значения.

В результате вычисления функции получаем следующее значение:

Внимание! Для текстового критерия (условия) диапазон усреднения указывать обязательно

Альтернативная формула для вычисления процента отклонения в Excel

В альтернативной формуле, вычисляющей относительное отклонение значений продаж с текущего года сразу делиться на значения продаж прошлого года, а только потом от результата отнимается единица: =C2/B2-1.

Как видно на рисунке результат вычисления альтернативной формулы такой же, как и в предыдущей, а значит правильный. Но альтернативную формулу легче записать, хот и возможно для кого-то сложнее прочитать так чтобы понять принцип ее действия. Или сложнее понять, какое значение выдает в результате вычисления данная формула если он не подписан.

Единственный недостаток данной альтернативной формулы – это отсутствие возможности рассчитать процентное отклонение при отрицательных числах в числителе или в заменителе. Даже если мы будем использовать в формуле функцию ABS, то формула будет возвращать ошибочный результат при отрицательном числе в заменителе.

Так как в Excel по умолчанию приоритет операции деления выше операции вычитания в данной формуле нет необходимости применять скобки.

Как рассчитать стандартное отклонение и RSD?

Относительное стандартное отклонение (RSD) часто бывает удобнее. Он выражается в процентах и ​​составляет полученное путем умножения стандартного отклонения на 100 и деления этого произведения на среднее значение..

Как рассчитать относительную точность? Формула относительной точности: st/ т. Обычно указывается в виде соотношения (например, 5/8) или в процентах. Относительную точность также можно использовать для отображения доверительного интервала измерения. Например, если RP составляет 10%, а ваше измерение составляет 220 градусов, то доверительный интервал составляет 220 градусов ± 22 градуса.

Что такое хорошее значение RSD? «Обычный» приемлемый предел повторяемости составляет 2% (но зависит от уровня концентрации аналита). Что касается CV% (коэффициент вариации), вы правы, это то же самое, что и RSD (относительное стандартное отклонение).

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: