Как рассчитывается коэффициент вариации и как его проанализировать

Расчет дисперсии, среднеквадратичного (стандартного) отклонения, коэффициента вариации в excel. что такое стандартное отклонение — использование функции стандотклон для расчета стандартного отклонения в excel

ОГЭ по информатике excel, 19 задание с объяснением темы

  1. Сколько продуктов в таблице содержат меньше 50 г углеводов и меньше 50 г белков? Запишите число, обозначающее количество этих продуктов, в ячейку H2 таблицы.
  2. Какова средняя калорийность продуктов с содержанием жиров менее 1 г? Запишите значение в ячейку H3 таблицы с точностью не менее двух знаков после запятой.

Для того, что бы определить темпа прироста из показателей расчетного периода вычитают показатель базового периода, впоследствии это результат делят на показатель базисного периода и умножают на 100%. В итоге мы получаем значение темпа прироста в процентах.

русский англ. действие синтаксис
СУММ SUM Суммирует все числа в интервале ячеек СУММ(число1;число2)
Пример:
=СУММ(3; 2) =СУММ(A2:A4)
СЧЁТ COUNT Подсчитывает количество всех непустых значений указанных ячеек СЧЁТ(значение1, ,…)
Пример:
=СЧЁТ(A5:A8)
СРЗНАЧ AVERAGE Возвращает среднее значение всех непустых значений указанных ячеек СРЕДНЕЕ(число1, ,…)
Пример:
=СРЗНАЧ(A2:A6)
МАКС MAX Возвращает наибольшее значение из набора значений МАКС(число1;число2; …)
Пример:
=МАКС(A2:A6)
МИН MIN Возвращает наименьшее значение из набора значений МИН(число1;число2; …)
Пример:
=МИН(A2:A6)
ЕСЛИ IF Проверка условия. Функция с тремя аргументами: первый аргумент — логическое выражение; если значение первого аргумента — истина, то результатом выполнения функции является второй аргумент. Если ложно — третий аргумент. ЕСЛИ(лог_выражение; значение_если_истина; значение_если_ложь)
Пример:
=ЕСЛИ(A2>B2;»Превышение»;»ОК»)
СЧЁТЕСЛИ COUNTIF Количество непустых ячеек в указанном диапазоне, удовлетворяющих заданному условию. СЧЁТЕСЛИ(диапазон, критерий)
Пример:
=СЧЁТЕСЛИ(A2:A5;»яблоки»)
СУММЕСЛИ SUMIF Сумма непустых ячеек в указанном диапазоне, удовлетворяющих заданному условию. СУММЕСЛИ (диапазон, критерий, )
Пример:
=СУММЕСЛИ(B2:B25;»>5″)

Как рассчитать динамику в процентах в Excel?

Чтобы найти разницу в процентах, необходимо использовать формулу: («новое» число – «старое» число) / «старое» число * 100%.…Задача: Найти разницу в процентах между «старыми» и «новыми» ценами поставщика.

Для того, что бы определить темпа прироста из показателей расчетного периода вычитают показатель базового периода, впоследствии это результат делят на показатель базисного периода и умножают на 100%. В итоге мы получаем значение темпа прироста в процентах.

Назначение и свойство стандартной ошибки средней арифметической

Стандартная ошибка средней много, где используется. И очень полезно понимать ее свойства. Посмотрим еще раз на формулу стандартной ошибки средней:

Числитель – это стандартное отклонение выборки и здесь все понятно. Чем больше разброс данных, тем больше стандартная ошибка средней – прямо пропорциональная зависимость.

Посмотрим на знаменатель. Здесь находится квадратный корень из объема выборки. Соответственно, чем больше объем выборки, тем меньше стандартная ошибка средней. Для наглядности изобразим на одной диаграмме график нормально распределенной переменной со средней равной 10, сигмой – 3, и второй график – распределение средней арифметической этой же переменной, полученной по 16-ти наблюдениям (которое также будет нормальным).

Судя по формуле, разброс стандартной ошибки средней должен быть в 4 раза (корень из 16) меньше, чем разброс исходных данных, что и видно на рисунке выше. Чем больше наблюдений, тем меньше разброс средней.

Казалось бы, что для получения наиболее точной средней достаточно использовать максимально большую выборку и тогда стандартная ошибка средней будет стремиться к нулю, а сама средняя, соответственно, к математическому ожиданию. Однако квадратный корень объема выборки в знаменателе говорит о том, что связь между точностью выборочной средней и размером выборки не является линейной. Например, увеличение выборки с 20-ти до 50-ти наблюдений, то есть на 30 значений или в 2,5 раза, уменьшает стандартную ошибку средней только на 36%, а со 100-а до 130-ти наблюдений (на те же 30 значений), снижает разброс данных лишь на 12%.

Лучше всего изобразить эту мысль в виде графика зависимости стандартной ошибки средней от размера выборки. Пусть стандартное отклонение равно 10 (на форму графика это не влияет).

Видно, что примерно после 50-ти значений, уменьшение стандартной ошибки средней резко замедляется, после 100-а – наклон постепенно становится почти нулевым.

Таким образом, при достижении некоторого размера выборки ее дальнейшее увеличение уже почти не сказывается на точности средней. Этот факт имеет далеко идущие последствия. Например, при проведении выборочного обследования населения (опроса) чрезмерное увеличение выборки ведет к неоправданным затратам, т.к. точность почти не меняется. Именно поэтому количество опрошенных редко превышает 1,5 тысячи человек. Точность при таком размере выборки часто является достаточной, а дальнейшее увеличение выборки – нецелесообразным.

Подведем итог. Расчет дисперсии и стандартной ошибки средней имеет довольно простую формулу и обладает полезным свойством, связанным с тем, что относительно хорошая точность средней достигается уже при 100 наблюдениях (в этом случае стандартная ошибка средней становится в 10 раз меньше, чем стандартное отклонение выборки). Больше, конечно, лучше, но бесконечно увеличивать объем выборки не имеет практического смысла. Хотя, все зависит от поставленных задач и цены ошибки. В некоторых опросах участие принимают десятки тысяч людей.

Дисперсия и стандартная ошибка средней имеют большое практическое значение. Они используются в проверке гипотез и расчете доверительных интервалов.

Проверка статистических гипотез о виде распределения

Вычисление среднего арифметического четырёх

Как уже видно по аналогии с прошлыми вариациями вычисление данного значения для количества, равного четырём, будет носить последующий порядок:

  1. Выбираются четыре числа, для которых нужно вычислить среднее арифметическое значение. Дальше делается суммирование и нахождение конечного результата данной процедуры.
  2. Сейчас чтоб получить окончательный итог, следует взять полученную сумму четырёх и поделить её на четыре. Приобретенные данные и будут требуемым значением.

Формула

Из описанной чуть повыше последовательности действий по нахождению среднего арифметического для четырёх, можно получить последующую формулу:

В данной формуле переменные имеют последующее значение:

А, В, С и Е – это те, к которым нужно отыскать значение среднего арифметического.

Применяя данную формулу, постоянно можно будет вычислять требуемое значение для данного количества чисел.

Расчет дисперсии в Microsoft Excel

​ результат на экране​ чтобы произвести расчет​Выделяем ячейку, в которую​«OK»​ значений, который нужно​ расчетов. Щелкаем по​ отдельно функции для​ – 50%, для​ А – 33%,​ разброса значений.​=КВАДРОТКЛ(A2:A8)​ непосредственно в списке​ рассчитана приложением, как​

​Выделяем ячейку и таким​«Число3»​

Вычисление дисперсии

​ с числовыми данными.​ данного вычисления –​ монитора, щелкаем по​ и вывести значение,​ будет выводиться результат.​.​ обработать. Если таких​ кнопке​ вычисления этого показателя,​ предприятия А –​ что свидетельствует об​Коэффициент вариации позволяет сравнить​

Способ 1: расчет по генеральной совокупности

​Сумма квадратов отклонений приведенных​ аргументов.​ по генеральной совокупности,​ же способом, как​​и т.д. После​​Производим выделение ячейки на​ довольно утомительное занятие.​

​ щёлкаем по кнопке​ Прежде всего, нужно​Запускается окно аргументов​ областей несколько и​«Вставить функцию»​ но имеются формулы​ 33%. Риск инвестирования​ относительной однородности ряда.​ риск инвестирования и​

​ выше данных от​Если аргумент, который является​ так и по​

  1. ​ и в предыдущий​ того, как все​ листе, в которую​ К счастью, в​Enter​​Enter​​ учесть, что коэффициент​СРЗНАЧ​

​ они не смежные​​. Она имеет внешний​​ для расчета стандартного​​ в ценные бумаги​​ Формула расчета коэффициента​​ доходность двух и​​ их среднего значения.​ массивом или ссылкой,​​ выборке. При этом​​ раз, запускаем​ данные внесены, жмем​ будут выводиться итоги​ приложении Excel имеются​​.​​на клавиатуре.​

​ вариации является процентным​. Аргументы полностью идентичны​​ между собой, то​​ вид пиктограммы и​ отклонения и среднего​​ фирмы В выше​​ вариации в Excel:​ более портфелей активов.​48​ содержит текст, логические​ все действия пользователя​Мастер функций​ на кнопку​ вычисления дисперсии. Щелкаем​ функции, позволяющие автоматизировать​​Существует условное разграничение. Считается,​​Как видим, результат расчета​​ значением. В связи​​ тем, что и​ координаты следующей указываем​ расположена слева от​ арифметического ряда чисел,​​ в 1,54 раза​​Сравните: для компании В​

​ Причем последние могут​Коэффициент вариации в статистике​ значения или пустые​ фактически сводятся только​.​«OK»​ по кнопке​ процедуру расчета. Выясним​ что если показатель​​ выведен на экран.​​ с этим следует​

​ у операторов группы​​ в поле​

Способ 2: расчет по выборке

​ строки формул.​ а именно они​ (50% / 33%).​ коэффициент вариации составил​ существенно отличаться. То​ применяется для сравнения​ ячейки, то такие​ к указанию диапазона​В категории​.​«Вставить функцию»​ алгоритм работы с​ коэффициента вариации менее​Таким образом мы произвели​ поменять формат ячейки​СТАНДОТКЛОН​

​Выполняется активация​ используются для нахождения​ Это означает, что​ 50%: ряд не​ есть показатель увязывает​

  1. ​ разброса двух случайных​ значения пропускаются; однако​ обрабатываемых чисел, а​«Полный алфавитный перечень»​​Как видим, после этих​​, размещенную слева от​

​ этими инструментами.​​ 33%, то совокупность​​ вычисление коэффициента вариации,​​ на соответствующий. Это​​. То есть, в​​и т.д. Когда​​Мастера функций​ коэффициента вариации.​ акции компании А​ является однородным, данные​​ риск и доходность.​​ величин с разными​

​ ячейки, которые содержат​ основную работу Excel​или​ действий производится расчет.​ строки формул.​Скачать последнюю версию​ чисел однородная. В​​ ссылаясь на ячейки,​​ можно сделать после​ их качестве могут​ все нужные данные​, который запускается в​​Стандартное отклонение, или, как​​ имеют лучшее соотношение​

​ значительно разбросаны относительно​ Позволяет оценить отношение​

​ единицами измерения относительно​​ нулевые значения, учитываются.​ делает сам. Безусловно,​

​«Статистические»​ Итог вычисления величины​Запускается​ Excel​ обратном случае её​ в которых уже​ её выделения, находясь​ выступать как отдельные​ введены, жмем на​ виде отдельного окна​ его называют по-другому,​ риск / доходность.​ среднего значения.​ между среднеквадратическим отклонением​ ожидаемого значения. В​Аргументы со значениями ошибок​ это сэкономит значительное​

Как работает стандартное отклонение в Excel

Максимальное и минимальное значение

Начнем с формул максимума и минимума. Что такое максимальное и минимальное значение, уверен, знают почти все. Максимум – самое большое значение из анализируемого набора данных, минимум – самое маленькое (может быть и отрицательным числом). Это крайние значения в совокупности данных, обозначающие границы их вариации. Примеры реального использования каждый может придумать сам – их полно. Это и минимальные/максимальные цены на что-нибудь, и выбор наилучшего или наихудшего решения задачи, и всего, чего угодно. Минимум и максимум – весьма информативные показатели. Давайте теперь их рассчитаем в Excel.

Как нетрудно догадаться, делается сие элементарно – как два клика об асфальт. В Мастере функций следует выбрать: МАКС – для расчета максимального значения, МИН – для расчета минимального значения. Для облегчения поиска перечень всех функций можно отфильтровать по категории «Статистические».

Выбираем нужную формулу, в следующем окошке указываем диапазон данных (в котором ищется максимальное или минимальное значение) и жмем «ОК».

Функции МАКС и МИН достаточно часто используются, поэтому разработчики Экселя предусмотрительно добавили соответствующие кнопки в ленту. Они находятся там же, где суммаи среднее значение – в разворачивающемся списке.

В общем, для вызова функции максимума или минимума действий потребуется не больше, чем для расчета средней арифметической. Все архипросто.

Основы регрессионного и корреляционного анализа

Как работает стандартное отклонение в Excel

Как выделить максимальное значение в Excel

В ситуации, когда вы хотите определить самое большое число в исходном наборе данных, самый быстрый способ – выделить его с помощью условного форматирования Excel. Приведенные ниже примеры покажут вам два разных варианта действий.

Выделите максимальное число в диапазоне

В Microsoft Excel есть предопределенное правило для форматирования максимальных чисел в диапазоне, которое идеально соответствует нашим потребностям. Вот как можно применить его:

  1. Выберите диапазон чисел (в нашем случае C2: E8).
  2. На вкладке «Главная» в группе «Стили» щелкните «Условное форматирование»> «Новое правило».
  3. В диалоговом окне «Новое правило форматирования» выберите «Форматировать только первые или последние значения».
  4. На нижней панели выберите «первым» из раскрывающегося списка и введите 1 в поле рядом с ним (это означает, что вы хотите выделить только одну ячейку, содержащую наибольшее значение).
  5. Нажмите кнопку «Формат» и выберите стиль оформления.
  6. Дважды щелкните OK, чтобы закрыть оба окна.

Как выделить цветом максимальное значение в каждой строке

Поскольку нет встроенного правила, чтобы выделить наибольшее значение из каждой строки, вам придется настроить собственное на основе функции МАКС. Вот как:

  1. Выберите все строки, которые вы хотите проверить (C3:E8).
  2. Кликните Новое правило > Использовать формулу.
  3. В поле Форматировать значения, запишите:

Где C3 — крайняя верхняя левая ячейка, а $C3:$E3 — координаты первой строки. Чтобы правило работало, обязательно зафиксируйте координаты столбца в диапазоне знаком $.

  1. Нажмите кнопку «Формат» и выберите нужный формат.
  2. Дважды щелкните ОК.

Кончик. Таким же образом вы можете выделить максимальноезначение в каждом столбце. Шаги в точности такие же, за исключением того, что вы пишете условие для диапазона первого столбца и фиксируете координаты строки:

Дополнительные сведения см. В разделе « Как создать правило условного форматирования на основе формул» .

Свойства дисперсии

Связанные определения

Положительная вариация вещественнозначной функции f{\displaystyle f} на отрезке a,b{\displaystyle } называется следующая величина:

Pabf =def supP∑k=mmax{,f(xk+1)−f(xk)}{\displaystyle P_{a}^{b}f\ {\stackrel {def}{=}}\ \sup \limits _{P}\sum \limits _{k=0}^{m}\max\{0,f(x_{k+1})-f(x_{k})\}}.

Аналогично определяется отрицательная вариация функции:

Nabf =def supP∑k=mmax{,f(xk)−f(xk+1)}{\displaystyle N_{a}^{b}f\ {\stackrel {def}{=}}\ \sup \limits _{P}\sum \limits _{k=0}^{m}\max\{0,f(x_{k})-f(x_{k+1})\}}.

Таким образом полная вариация функции может быть представлена в виде суммы

Vabf=Pabf+Nabf{\displaystyle V_{a}^{b}f=P_{a}^{b}f+N_{a}^{b}f}.

Расчет в Excel

Дисперсия, среднеквадратичное (стандартное) отклонение, коэффициент вариации в Excel

Из предыдущей статьи мы узнали о таких показателях, как размах вариации, межквартильный размах и среднее линейное отклонение. В этой статье изучим дисперсию, среднеквадратичное отклонение и коэффициент вариации.

Дисперсия случайной величины – это один из основных показателей в статистике. Он отражает меру разброса данных вокруг средней арифметической.

Сейчас небольшой экскурс в теорию вероятностей, которая лежит в основе математической статистики

Как и матожидание, дисперсия является важной характеристикой случайной величины. Если матожидание отражает центр случайной величины, то дисперсия дает характеристику разброса данных вокруг центра

Формула дисперсии в теории вероятностей имеет вид:

То есть дисперсия — это математическое ожидание отклонений от математического ожидания.

На практике при анализе выборок математическое ожидание, как правило, не известно. Поэтому вместо него используют оценку – среднее арифметическое. Расчет дисперсии производят по формуле:

s 2 – выборочная дисперсия, рассчитанная по данным наблюдений,

X – отдельные значения,

X̅– среднее арифметическое по выборке.

Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом здесь. Однако при увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной.

Простыми словами дисперсия – это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения. В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя. Теперь вы знаете, как найти дисперсию.

Как посчитать отклонение в процентах в Excel

Правило сложения дисперсий

Для оценки влияния факторов, определяющих вариацию, используют прием группировки: совокупность разбивают на группы, выбрав в качестве группировочного признака один из определяющих факторов. Тогда наряду с общей дисперсией, рассчитанной по всей совокупности, вычисляют внутигрупповую дисперсию (или среднюю из групповых) и межгрупповую дисперсию (или дисперсию групповых средних).

Общая дисперсия характеризует вариацию признака во всей совокупности, сложившуюся под влиянием всех факторов и условий.

Межгрупповая дисперсия измеряет систематическую вариацию, обусловленную влиянием фактора, по которому произведена группировка:

  • — групповые средние,
  • — численность единиц i-й группы

Внутригрупповая дисперсия оценивает вариацию признака, сложившуюся по влиянием других, неучитываемых в данном исследовании факторов и независящую от фактора группировки. Она определяется как средняя из групповых дисперсий.

— дисперсия i-ой группы.

Все три дисперсии () связаны между собой следующим равенством, которое известно как правило сложения дисперсий:

на этом соотношении строятся показатели, оценивающие влияние признака группировки на образование общей вариации. К ним относятся эмпирический коэффициент детерминации () и эмпирическое корреляционное отношение ()

Эмпирический коэффициент детерминации () характеризует долю межгрупоовой дисперсии в общей дисперсии:

и показывает насколько вариация признака в совокупности обусловлена фактором группировки.

Эмпирическое корреляционное отношение (!!\eta = \sqrt{ \frac{\delta^2}{\sigma^2} }

оценивает тесноту связи между изучаемым и группировочным признаками. Предельными значениями являются нуль и единица. Чем ближе к единице, тем теснее связь.

Пример. Стоимость 1 кв.м общей площади (усл.ед) на рынке жилья по десяти 17-м домам улучшенной планировки составляла:

При этом известно, что первые пять домов были построены вблизи делового центра, а остальные — на значительном расстоянии от него.

Для рассчета общей дисперсии вычислим среднюю стоимость 1 кв.м. общей площади: Общую дисперсию определим по формуле:

.

Вычислим среднюю стоимость 1 кв.м. и дисперсию по этому показателю для каждой группы домов, отличающихся месторасположением относительно центра города:

а) для домов, построенных вблизи центра:

б) для домов, построенных далеко от центра:

Вариация стоимости 1 кв.м. общей площади, вызванная изменением местоположения домов, определяется величиной межгрупповой дисперсии:

Вариация стоимости 1 кв.м. общей площади, обусловленная изменением остальных неучитываемых нами показателей, измеряется величиной внутригрупповой дисперсии

Найденные дисперссии в сумме дают величину общей дисперсии

Эмпирический коэффициент детерминации:

показывает, что дисперсия стоимости 1.кв.м. общей площади на рынке жилья на 81,8% объясняется различиями в расположении новостроек по отношению к деловому центру и на 18,2% — другими факторами.

Эмприческое корреляционное отношение свидетельствует о существенном влиянии на стоимость жилья месторасположения домов.

Правило сложения дисперсий для доли признака записывается так:

а три вида дисперсий доли для сгруппированных данных определяется по следующим формулам:

общая дисперсия:

Формулы межгрупповой и внутригрупповой дисперсий:

Коэффициент вариации в статистике: примеры расчета

Коэффициент вариации в статистике: примеры расчета

Как доказать, что закономерность, полученная при изучении экспериментальных данных, не является результатом совпадения или ошибки экспериментатора, что она достоверна? С таким вопросом сталкиваются начинающие исследователи.Описательная статистика предоставляет инструменты для решения этих задач. Она имеет два больших раздела – описание данных и их сопоставление в группах или в ряду между собой.

  • Показатели описательной статистики
  • Среднее арифметическое
  • Стандартное отклонение
  • Коэффициент вариации
  • Расчёты в Microsoft Ecxel 2016

Среднее арифметическое

Итак, представим, что перед нами стоит задача описать рост всех студентов в группе из десяти человек. Вооружившись линейкой и проведя измерения, мы получаем маленький ряд из десяти чисел (рост в сантиметрах):

168, 171, 175, 177, 179, 187, 174, 176, 179, 169.

Если внимательно посмотреть на этот линейный ряд, то можно обнаружить несколько закономерностей:

  • Ширина интервала, куда попадает рост всех студентов, – 18 см.
  • В распределении рост наиболее близок к середине этого интервала.
  • Встречаются и исключения, которые наиболее близко расположены к верхней или нижней границе интервала.

Совершенно очевидно, что для выполнения задачи по описанию роста студентов в группе нет необходимости приводить все значения, которые будут измеряться.

Для этой цели достаточно привести всего два, которые в статистике называются параметрами распределения. Это среднеарифметическое и стандартное отклонение от среднего арифметического.

Если обратиться к росту студентов, то формула будет выглядеть следующим образом:

Среднеарифметическое значение роста студентов = (Сумма всех значений роста студентов) / (Число студентов, участвовавших в измерении)

Среднее арифметическое – это отношение суммы всех значений одного признака для всех членов совокупности (X) к числу всех членов совокупности (N).

Если применить эту формулу к нашим измерениям, то получаем, что μ для роста студентов в группе 175,5 см.

Стандартное отклонение

Если присмотреться к росту студентов, который мы измерили в предыдущем примере, то понятно, что рост каждого на сколько-то отличается от вычисленного среднего (175,5 см). Для полноты описания нужно понять, какой является разница между средним ростом каждого студента и средним значением.

На первом этапе вычислим параметр дисперсии. Дисперсия в статистике (обозначается σ2 (сигма в квадрате)) – это отношение суммы квадратов разности среднего арифметического (μ) и значения члена ряда (Х) к числу всех членов совокупности (N). В виде формулы это рассчитывается понятнее:

Значения, которые мы получим в результате вычислений по этой формуле, мы будем представлять в виде квадрата величины (в нашем случае – квадратные сантиметры). Характеризовать рост в сантиметрах квадратными сантиметрами, согласитесь, нелепо. Поэтому мы можем исправить, точнее, упростить это выражение и получим среднеквадратичное отклонение формулу и расчёт, пример:

Таким образом, мы получили величину стандартного отклонения (или среднего квадратичного отклонения) – квадратный корень из дисперсии. С единицами измерения тоже теперь все в порядке, можем посчитать стандартное отклонение для группы:

Получается, что наша группа студентов исчисляется по росту таким образом: 175,50±5,25 см.

Расчёты в Microsoft Ecxel 2016

Можно рассчитать описанные в статье статистические показатели в программе Microsoft Excel 2016, через специальные функции в программе. Необходимая информация приведена в таблице:

Наименование показателя Расчёт в Excel 2016*
Среднее арифметическое =СРГАРМ(A1:A10)
Дисперсия =ДИСП.В(A1:A10)
Среднеквадратический показатель =СТАНДОТКЛОН.В(A1:A10)
Коэффициент вариации =СТАНДОТКЛОН.Г(A1:A10)/СРЗНАЧ(A1:A10)
Коэффициент осцилляции =(МАКС(A1:A10)-МИН(A1:A10))/СРЗНАЧ(A1:A10)

* — в таблице указан диапазон A1:A10 для примера, при расчётах нужно указать требуемый диапазон.

Итак, обобщим информацию:

  1. Среднее арифметическое – это значение, позволяющее найти среднее значение показателя в ряду данных.
  2. Дисперсия – это среднее значение отклонений возведенное в квадрат.
  3. Стандартное отклонение (среднеквадратичное отклонение) – это корень квадратный из дисперсии, для приведения единиц измерения к одинаковым со среднеарифметическим.
  4. Коэффициент вариации – значение отклонений от среднего, выраженное в относительных величинах (%).

Отдельно следует отметить, что все приведённые в статье показатели, как правило, не имеют собственного смысла и используются для того, чтобы составлять более сложную схему анализа данных. Исключение из этого правила — коэффициент вариации, который является мерой однородности данных.

Digma DiMagic Cube

«Кубический» карманный проектор отечественного производителя Digma DiMagic Cube работает на Android 7.1 и поддерживает Microsoft Office. Он отлично подойдет для работы с презентациями – к проектору можно подключить мышь и клавиатуру (по проводу или Bluetooth) и работать напрямую без ноутбука или компьютера.

Устройство предлагает максимальную диагональ проекции 120” с разрешением 854×480 пикселей, яркостью 50 ANSI-люмен и контрастностью 10000:1. И все это в компактных габаритах 6,1×6,4×6,2 см.

Digma DiMagic Cube получил встроенный динамик (2 Вт) и аккумулятор (5000 мАч)

Проектор поддерживает передачу данных через беспроводное соединение. Также для просмотра контента можно использовать флешки – здесь предусмотрен USB-порт. Кроме того, устройство оснащено 16 Гбайт внутренней памяти – на нем можно хранить фильмы, фото или презентации.

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: