T-критерий стьюдента для проверки гипотезы о средней и расчета доверительного интервала в excel

Критерий стьюдента, t-тест и нормальное распределение

Пример использования т-критерия Стьюдента

А пример будет достаточно простой: мне интересно, стали ли люди выше за последние 100 лет. Для этого нужно подобрать некоторые данные. Я обнаружил интересную информацию в достаточно известной статье The Guardian (Tall story’s men and women have grown taller over last century, Study Shows (The Guardian, July 2016), которая сравнивает средний возраст человека в разных странах в 1914 году и в аналогичных странах в 2014 году.

Там приведены данные практически по всем государствам. Однако, я взял лишь 5 стран для простоты вычислений: это Россия, Германия, Китай, США и ЮАР, соответственно 1914 год и 2014 год.

Общее количество наблюдений – 5 в 1914 году в группе 1914 года и общее значение также 5 в 2014 году. Будем думать опять же для простоты, что эти данные сопоставимы, и с ними можно работать.

Дальше нужно выбрать критерии – критерии, по которым мы будем давать ответ. Равны ли средние по росту в 1914 году x̅1914 и в 2014 году x̅2014. Я считаю, что нет. Поэтому моя гипотеза это то, что они не равны (x̅1914≠x̅2014). Соответственно альтернативная гипотеза моему предположению, так называемая нулевая гипотеза (нулевая гипотеза консервативна, обратная вашей, часто говорит об отсутствии статистически значимых связей/зависимостей) будет говорить о том, что они между собой на самом деле равны (x̅1914=x̅2014), то есть о том, что все эти находки случайны, и я, по сути, не прав.

Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата). В последнем случае рассчитывается парный t-критерий Стьюдента

В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение. Также имеет значение равенство дисперсий (распределения) сравниваемых групп (гомоскедастичность). При неравных дисперсиях применяется t-критерий в модификации Уэлча (Welch’s t).

При отсутствии нормального распределения сравниваемых выборок вместо t-критерия Стьюдента используются аналогичные методы непараметрической статистики, среди которых наиболее известными является U-критерий Манна — Уитни.

Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n1 и n2). Находим число степеней свободы f по следующей формуле:

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже).

Сравниваем критическое и рассчитанное значения критерия:

  • Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.
  • Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

Вы можете внести данные для расчета критерия Т-Стьюдента поочередно вручную или скопировать их из вашего Excel файла.

Критерий Стьюдента в Microsoft Excel

Одним из наиболее известных статистических инструментов является критерий Стьюдента. Он используется для измерения статистической значимости различных парных величин. Microsoft Excel обладает специальной функцией для расчета данного показателя. Давайте узнаем, как рассчитать критерий Стьюдента в Экселе.

Определение термина

Но, для начала давайте все-таки выясним, что представляет собой критерий Стьюдента в общем. Данный показатель применяется для проверки равенства средних значений двух выборок. То есть, он определяет достоверность различий между двумя группами данных. При этом, для определения этого критерия используется целый набор методов. Показатель можно рассчитывать с учетом одностороннего или двухстороннего распределения.

Расчет показателя в Excel

Теперь перейдем непосредственно к вопросу, как рассчитать данный показатель в Экселе. Его можно произвести через функцию СТЬЮДЕНТ.ТЕСТ. В версиях Excel 2007 года и ранее она называлась ТТЕСТ. Впрочем, она была оставлена и в позднейших версиях в целях совместимости, но в них все-таки рекомендуется использовать более современную — СТЬЮДЕНТ.ТЕСТ. Данную функцию можно использовать тремя способами, о которых подробно пойдет речь ниже.

Способ 1: Мастер функций

Проще всего производить вычисления данного показателя через Мастер функций.

  1. Строим таблицу с двумя рядами переменных.

Кликаем по любой пустой ячейке. Жмем на кнопку «Вставить функцию» для вызова Мастера функций.

Открывается окно аргументов. В полях «Массив1» и «Массив2» вводим координаты соответствующих двух рядов переменных. Это можно сделать, просто выделив курсором нужные ячейки.

В поле «Хвосты» вписываем значение «1», если будет производиться расчет методом одностороннего распределения, и «2» в случае двухстороннего распределения.

В поле «Тип» вводятся следующие значения:

  • 1 – выборка состоит из зависимых величин;
  • 2 – выборка состоит из независимых величин;
  • 3 – выборка состоит из независимых величин с неравным отклонением.

Когда все данные заполнены, жмем на кнопку «OK».

Выполняется расчет, а результат выводится на экран в заранее выделенную ячейку.

Способ 2: работа со вкладкой «Формулы»

Функцию СТЬЮДЕНТ.ТЕСТ можно вызвать также путем перехода во вкладку «Формулы» с помощью специальной кнопки на ленте.

  1. Выделяем ячейку для вывода результата на лист. Выполняем переход во вкладку «Формулы».

Делаем клик по кнопке «Другие функции», расположенной на ленте в блоке инструментов «Библиотека функций». В раскрывшемся списке переходим в раздел «Статистические». Из представленных вариантов выбираем «СТЬЮДЕНТ.ТЕСТ».

Открывается окно аргументов, которые мы подробно изучили при описании предыдущего способа. Все дальнейшие действия точно такие же, как и в нём.

Способ 3: ручной ввод

Формулу СТЬЮДЕНТ.ТЕСТ также можно ввести вручную в любую ячейку на листе или в строку функций. Её синтаксический вид выглядит следующим образом:

Что означает каждый из аргументов, было рассмотрено при разборе первого способа. Эти значения и следует подставлять в данную функцию.

После того, как данные введены, жмем кнопку Enter для вывода результата на экран.

Как видим, вычисляется критерий Стьюдента в Excel очень просто и быстро. Главное, пользователь, который проводит вычисления, должен понимать, что он собой представляет и какие вводимые данные за что отвечают. Непосредственный расчет программа выполняет сама.

Мы рады, что смогли помочь Вам в решении проблемы.

Помимо этой статьи, на сайте еще 11905 инструкций. Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Расчет доверительного интервала для математического ожидания с помощью t-распределения Стьюдента в Excel

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов. Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α, стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия2. Более современным, рассчитав p-value, добавив степень уверенности при отклонении гипотезы.3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия)

Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю видеоролик о том, как рассчитать критерий Стьюдента и проверить гипотезу о генеральной средней в Excel.

Иногда просят объяснить, как делаются такие наглядные диаграммы с распределением. Ниже можно скачать файл, где проводились расчеты для этой статьи.

Всего доброго, будьте здоровы.

Запускаем t-тест Стьюдента в среде R

Итак, если данные из выборок имеют нормальное распределение, можно смело приступать к сравнению средних этих выборок. Существует три основных типа t-теста, которые применяются в различных ситуациях. Рассмотрим каждый из них с использованием наглядных примеров.

Одновыборочный критерий Стьюдента (one-sample t-test)

Одновыборочный t-тест следует выбирать, если Вы сравниваете выборку с общеизвестным средним. Например, отличается ли средний возраст жителей Северо-Кавказского Федерального округа от общего по России. Существует мнение, что климат Кавказа и культурные особенности населяющих его народов способствуют продлению жизни. Для того, чтобы проверить эту гипотезу, мы возьмем данные РосСтата (таблицы среднего ожидаемого продолжительности жизни по регионам России) и применим одновыборочный критерий Стьюдента. Так как критерий Стьюдента основан на проверке статистических гипотез, то за нулевую гипотезу будем принимать то, что различий между средним ожидаемым уровнем продолжительности по России и республикам Северного Кавказа нет. Если различия существуют, то для того, чтобы считать их статистически значимыми p-value должно быть менее 0.05 (логика та же, что и в вышеописанном тесте Шапиро-Уилка).

Загрузим данные в R. Для этого, создадим вектор со средними значениями по республикам Кавказа (включая Адыгею). Затем, запустим одновыборочный t-тест, указав в параметре mu среднее значение ожидаемого возраста жизни по России равное 70.93.

Несмотря на то, что у нас всего 7 точек в выборке, в целом они проходят тесты нормальности и мы можем на них полагаться, так как эти данные уже были усреднены по региону.

Результаты t-теста говорят о том, что средняя ожидаемая продолжительность жизни у жителей Северного Кавказа (74.6 лет) действительно выше, чем в среднем по России (70.93 лет), а результаты теста являются статистически значимыми (p < 0.05).

Двувыборочный для независимых выборок (independent two-sample t-test)

Двувыборочный t-тест используется, когда Вы сравниваете две независимые выборки. Допустим, мы хотим узнать, отличается ли урожайность картофеля на севере и на юге какого-либо региона. Для этого, мы собрали данные с 40 фермерских хозяйств: 20 из которых располагались на севере и сформировали выборку «North», а остальные 20 — на юге, сформировав выборку «South».

Загрузим данные в среду R. Кроме проверки нормальности данных, будет полезно построить «график с усами», на котором можно видеть медианы и разброс данных для обеих выборок.

Как видно из графика, медианы выборок не сильно отличаются друг от друга, однако разброс данных гораздо сильнее на севере. Проверим отличаются ли статистически средние значения при помощи функции t.test. Однако в этот раз на место параметра mu мы ставим имя второй выборки. Результаты теста, которые Вы видите на рисунке снизу, говорят о том, что средняя урожайность картофеля на севере статистически не отличается от урожайности на юге (p = 0.6339).

Двувыборочный для зависимых выборок (dependent two-sample t-test)

Третий вид t-теста используется в том случае, если элементы выборок зависят друг от друга. Он идеально подходит для проверки повторяемости результатов эксперимента: если данные повтора статистически не отличаются от оригинала, то повторяемость данных высокая. Также двувыборочный критерий Стьюдента для зависимых выборок широко применяется в медицинских исследованиях при изучении эффекта лекарства на организм до и после приема.

Для того, чтобы запустить его в R, следует ввести все ту же функцию t.test. Однако, в скобках, после таблиц данных, следует ввести дополнительный аргумент paired = TRUE. Этот аргумент говорит о том, что Ваши данные зависят друг от друга. Например:

Также в функции t.test существует два дополнительных аргумента, которые могут улучшить качество результатов теста: var.equal и alternative. Если вы знаете, что вариация между выборками равна, вставьте аргумент var.equal = TRUE. Если же вы хотите проверить гипотезу о том, что разница между средними в выборках значительно меньше или больше 0, то введите аргумент alternative=»less» или alternative=»greater» (по умолчанию альтернативная гипотеза говорит о том, что выборки просто отличаются друг от друга: alternative=»two.sided»).

Доверительный интервал

крайне мала и равна 0,003(1–0,997). Такие маловероятные события считаются практически невозможными, а потому величину

Выборочное наблюдение дает возможность определить среднюю арифметическую выборочной совокупности x и величину предельной ошибки этой средней ∆x, которая показывает с определенной вероятностью), насколько выборочная может отличаться от генеральной средней в большую или меньшую сторону. Тогда величина генеральной средней будет представлена интервальной оценкой, для которой нижняя граница будет равна

Интервал, в который с данной степенью вероятности будет заключена неизвестная величина оцениваемого параметра, называют доверительным, а вероятность Р – доверительной вероятностью. Чаще всего доверительную вероятность принимают равной 0,95 или 0,99, тогда коэффициент доверия t равен соответственно 1,96 и 2,58. Это означает, что доверительный интервал с заданной вероятностью заключает в себе генеральную среднюю.

Наряду с абсолютной величиной предельной ошибки выборки рассчитывается и относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности:

Чем больше величина предельной ошибки выборки, тем больше величина доверительного интервала и тем, следовательно, ниже точность оценки. Средняя (стандартная) ошибка выборки зависит от объема выборки и степени вариации признака в генеральной совокупности.

Функция ДОВЕРИТ

Возвращает значение, с помощью которого можно определить доверительный интервал для математического ожидания генеральной совокупности.

Доверительный интервал представляет собой диапазон значений. Выборочное среднее x является серединой этого диапазона, следовательно, доверительный интервал определяется как (x ± ДОВЕРИТ). Например, если x — это среднее выборочное значение времени доставки товаров, заказанных по почте, то математическое ожидание генеральной совокупности принадлежит интервалу (x ± ДОВЕРИТ).

Для любого значения математического ожидания генеральной совокупности μ0, находящегося в этом интервале, вероятность того, что выборочное среднее отличается от μ0 более чем на x, превышает значение уровня значимости «альфа». Для любого математического ожидания μ0, не относящегося к этому интервалу, вероятность того, что выборочное среднее отличается от μ0 более чем на x, не превышает значения уровня значимости «альфа». Например, предположим, что требуется при заданном выборочном среднем x, стандартном отклонении генеральной совокупности и размере выборки создать критерий на основе двойной выборки при уровни значимости «альфа» для проверки гипотезы о том, согласно которой, математическое ожидание равно μ0. В этом случае гипотеза не отвергается, если μ0 принадлежит доверительному интервалу, и отвергается, если μ0 не принадлежит доверительному интервалу. Доверительный интервал не позволяет предполагать, что с вероятностью (1 альфа) время доставки следующей посылки окажется в пределах доверительного интервала.

Синтаксис

ДОВЕРИТ(альфа ;станд_откл;размер)

Альфа — уровень значимости, используемый для вычисления уровня надежности. Уровень надежности равняется 100*(1 — альфа) процентам или, другими словами, значение аргумента «альфа», равное 0,05, означает 95-процентный уровень надежности.

Станд_откл — стандартное отклонение генеральной совокупности для интервала данных, предполагается известным.

Размер — размер выборки.

Замечания

·        Если какой-либо из аргументов не является числом, функция ДОВЕРИТ возвращает значение ошибки #ЗНАЧ!.

·        Если альфа ≤ 0 или альфа ≥ 1, функция ДОВЕРИТ возвращает значение ошибки #ЧИСЛО!.

·        Если станд_откл ≤ 0, функция ДОВЕРИТ возвращает значение ошибки #ЧИСЛО!.

·        Если значения аргумента «размер» не является целым числом, то оно усекается.

·        Если размер < 1, функция ДОВЕРИТ возвращает значение ошибки #ЧИСЛО!.

·        Если предположить, что альфа = 0,05, то нужно определить ту часть стандартной нормальной кривой, которая равна (1 — альфа), или 95 процентам. Это значение равно ± 1,96. Следовательно, доверительный интервал, следовательно, определяется по формуле:

<<<<предыдущая || оглавление || следующая>>

Инструменты Excel для построения интервальных оценок параметров распределений

Все, рассмотренные в этом разделе инструменты вычисляют значения квантилей как значения функций, обратных соответствующим функциям распределения. Все эти функции – библиотечные функции Excel из группы функций «Статистические»,.

Функция вычисления критических точек распределения Лапласа

Функция возвращает (вычисляет) значения квантили уровня, равного значению, введенному в поле «Вероятность» (понятно, что это число из промежутка (0б 1)) стандартного нормального распределения.

Функция вычисления критических точек распределения Стьюдента

Функция возвращает (вычисляет) значения квантили уровня, равного значению, введенному в поле «Вероятность» (понятно, что это число из промежутка (0б 1)) распределения Стьюдента с числом степеней свободы, равным значению, введенному в поле «Степени свободы» (понятно, что это натуральное число).

Важно знать, что функция Excel СТЬЮДРАСПОБР( p , k ) возвращает значение t , при котором P (| x | > t ) = p , x — значение случайной величины, имеющей распределение Стьюдента с k степенями свободы. Поэтому решение уравнения

Поэтому решение уравнения

n

Функция вычисления критических точек распределения

Функция возвращает (вычисляет) значения квантили уровня, равного значению, введенному в поле «Вероятность» (понятно, что это число из промежутка (0б 1)) распределения

В Excel функция распределения случайной величины определена нестандартно: F x ( x ) = P ( x > x ). Поэтому для вычисления квантиля

Число степеней свободы в распределении Стьюдента

Пример 2. Сгенерировать 8 случайных чисел с использованием функции СЛЧИС, для которых распределение Стьюдента имеет 4 степени свободы.

Поскольку вероятность того, что случайна величина примет как отрицательное, так и положительное значение является одинаковой и равна 0,5 (распределение Стьюдента симметрично относительно вертикальной оси графика), используем функцию ЕСЛИ для проверки значений.

Выделим 8 ячеек и запишем следующую функцию (вводить как формулу массива CTRL+SHIFT+Enter):

То есть, если случайное значение вероятности, сгенерированное функцией СЛЧИС меньше 0,5, будет сгенерировано отрицательное t-значение, иначе – положительное.

Результат вычислений:

Построение доверительного интервала

Обычно, зная распределение и его параметры, мы можем вычислить вероятность того, что случайная величина примет значение из заданного нами интервала. Сейчас поступим наоборот: найдем интервал, в который случайная величина попадет с заданной вероятностью. Например, из свойств нормального распределения известно, что с вероятностью 95%, случайная величина, распределенная по нормальному закону , попадет в интервал примерно +/- 2 стандартных отклонения от среднего значения (см. статью про нормальное распределение ). Этот интервал, послужит нам прототипом для доверительного интервала .

Теперь разберемся,знаем ли мы распределение , чтобы вычислить этот интервал? Для ответа на вопрос мы должны указать форму распределения и его параметры.

Форму распределения мы знаем – это нормальное распределение (напомним, что речь идет о выборочном распределении статистики Х ср ).

Параметр μ нам неизвестен (его как раз нужно оценить с помощью доверительного интервала ), но у нас есть его оценка Х ср , вычисленная на основе выборки, которую можно использовать.

Второй параметр – стандартное отклонение выборочного среднего будем считать известным , он равен σ/√n.

Т.к. мы не знаем μ, то будем строить интервал +/- 2 стандартных отклонения не от среднего значения , а от известной его оценки Х ср . Т.е. при расчете доверительного интервала мы НЕ будем считать, что Х ср попадет в интервал +/- 2 стандартных отклонения от μ с вероятностью 95%, а будем считать, что интервал +/- 2 стандартных отклонения от Х ср с вероятностью 95% накроет μ – среднее генеральной совокупности, из которого взята выборка . Эти два утверждения эквивалентны, но второе утверждение нам позволяет построить доверительный интервал .

Кроме того, уточним интервал: случайная величина, распределенная по нормальному закону , с вероятностью 95% попадает в интервал +/- 1,960 стандартных отклонений, а не+/- 2 стандартных отклонения . Это можно рассчитать с помощью формулы =НОРМ.СТ.ОБР((1+0,95)/2) , см. файл примера Лист Интервал .

Теперь мы можем сформулировать вероятностное утверждение, которое послужит нам для формирования доверительного интервала : «Вероятность того, что среднее генеральной совокупности находится от среднего выборки в пределах 1,960 « стандартных отклонений выборочного среднего» , равна 95%».

Значение вероятности, упомянутое в утверждении, имеет специальное название уровень доверия , который связан с уровнем значимости α (альфа) простым выражением уровень доверия = 1 -α . В нашем случае уровень значимости α =1-0,95=0,05 .

Теперь на основе этого вероятностного утверждения запишем выражение для вычисления доверительного интервала :

Примечание : Верхний α/2-квантиль определяет ширину доверительного интервала в стандартных отклонениях выборочного среднего. Верхний α/2-квантиль стандартного нормального распределения всегда больше 0, что очень удобно.

В нашем случае при α=0,05, верхний α/2-квантиль равен 1,960. Для других уровней значимости α (10%; 1%) верхний α/2-квантиль Z α/2 можно вычислить с помощью формулы =НОРМ.СТ.ОБР(1-α/2) или, если известен уровень доверия , =НОРМ.СТ.ОБР((1+ур.доверия)/2) .

Обычно при построении доверительных интервалов для оценки среднего используют только верхний α /2- квантиль и не используют нижний α /2- квантиль . Это возможно потому, что стандартное нормальное распределение симметрично относительно оси х ( плотность его распределения симметрична относительно среднего, т.е. 0 ) . Поэтому, нет нужды вычислять нижний α/2-квантиль (его называют просто α /2-квантиль ), т.к. он равен верхнему α /2- квантилю со знаком минус.

Напомним, что, не смотря на форму распределения величины х, соответствующая случайная величина Х ср распределена приблизительно нормально N(μ;σ 2 /n) (см. статью про ЦПТ ). Следовательно, в общем случае, вышеуказанное выражение для доверительного интервала является лишь приближенным. Если величина х распределена по нормальному закону N(μ;σ 2 /n), то выражение для доверительного интервала является точным.

Число степеней свободы в распределении Стьюдента

Пример 2. Сгенерировать 8 случайных чисел с использованием функции СЛЧИС, для которых распределение Стьюдента имеет 4 степени свободы.

Поскольку вероятность того, что случайна величина примет как отрицательное, так и положительное значение является одинаковой и равна 0,5 (распределение Стьюдента симметрично относительно вертикальной оси графика), используем функцию ЕСЛИ для проверки значений.

Выделим 8 ячеек и запишем следующую функцию (вводить как формулу массива CTRL+SHIFT+Enter):

То есть, если случайное значение вероятности, сгенерированное функцией СЛЧИС меньше 0,5, будет сгенерировано отрицательное t-значение, иначе – положительное.

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: