Как построить эмпирическую функцию распределения в excel

Мат ожидание в экселе

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы. 

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец , т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен). 

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Для наглядности можно взглянуть на рисунок.

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Рисунок ниже.

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Функция EXP (экспонента) в Microsoft Excel

Одной из самых известных показательных функций в математике является экспонента. Она представляет собой число Эйлера, возведенное в указанную степень. В Экселе существует отдельный оператор, позволяющий её вычислить. Давайте разберемся, как его можно использовать на практике.

Вычисление экспоненты в Эксель

Экспонента является числом Эйлера, возведенным в заданную степень. Само число Эйлера приблизительно равно 2,718281828. Иногда его именуют также числом Непера. Функция экспоненты выглядит следующим образом:

где e – это число Эйлера, а n – степень возведения.

Для вычисления данного показателя в Экселе применяется отдельный оператор – EXP. Кроме того, эту функцию можно отобразить в виде графика. О работе с этими инструментами мы и поговорим далее.

Способ 1: вычисление экспоненты при помощи ручного ввода функции

Для того чтобы рассчитать в Экселе величину экспоненты для значения e в указанной степени, нужно воспользоваться специальным оператором EXP. Его синтаксис является следующим:

То есть, эта формула содержит только один аргумент. Он как раз и представляет собой степень, в которую нужно возвести число Эйлера. Этот аргумент может быть как в виде числового значения, так и принимать вид ссылки на ячейку, содержащую в себе указатель степени.

  1. Таким образом для того, чтобы рассчитать экспоненту для третьей степени, нам достаточно ввести в строку формул или в любую незаполненную ячейку на листе следующее выражение:

Способ 2: использование Мастера функций

Хотя синтаксис расчета экспоненты предельно прост, некоторые пользователи предпочитают применять Мастер функций. Рассмотрим, как это делается на примере.

  1. Устанавливаем курсор на ту ячейку, где должен будет выводиться итоговый результат расчета. Щелкаем по значку в виде пиктограммы «Вставить функцию» слева от строки формул.

Если в качестве аргумента используется ссылка на ячейку, которая содержит показатель степени, то нужно поставить курсор в поле «Число» и просто выделить ту ячейку на листе. Её координаты тут же отобразятся в поле. После этого для расчета результата щелкаем по кнопке «OK».

Способ 3: построение графика

Кроме того, в Экселе существует возможность построить график, взяв за основу результаты, полученные вследствие вычисления экспоненты. Для построения графика на листе должны уже иметься рассчитанные значения экспоненты различных степеней. Произвести их вычисление можно одним из способов, которые описаны выше.

  1. Выделяем диапазон, в котором представлены экспоненты. Переходим во вкладку «Вставка». На ленте в группе настроек «Диаграммы» нажимаем на кнопку «График». Открывается список графиков. Выбирайте тот тип, который считаете более подходящим для выполнения конкретных задач.

Как видим, рассчитать экспоненту в Экселе при помощи функции EXP элементарно просто. Эту процедуру легко произвести как в ручном режиме, так и посредством Мастера функций. Кроме того, программа предоставляет инструменты для построения графика на основе этих расчетов.

Мы рады, что смогли помочь Вам в решении проблемы.

Помимо этой статьи, на сайте еще 12345 инструкций. Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Опишите, что у вас не получилось. Наши специалисты постараются ответить максимально быстро.

Применение распределения Пуассона

Примеры, когда Распределение Пуассона
является адекватной моделью:

  • число вызовов, поступивших на телефонную станцию за определенный период времени;
  • число частиц, подвергнувшихся радиоактивному распаду за определенный период времени;
  • число дефектов в куске ткани фиксированной длины.

Распределение Пуассона
является адекватной моделью, если выполняются следующие условия:

  • события происходят независимо друг от друга, т.е. вероятность последующего события не зависит от предыдущего;
  • средняя частота событий постоянна. Как следствие, вероятность события пропорциональна длине интервала наблюдения;
  • два события не могут произойти одновременно;
  • число событий должно принимать значения 0; 1; 2…

Примечание
: Хорошей подсказкой, что наблюдаемая случайная величина имеет распределение Пуассона,
является тот факт, что приблизительно равно (см. ниже).

Ниже представлены примеры ситуаций, когда Распределение Пуассона
не может
быть применено:

  • число студентов, которые выходят из университета в течение часа (т.к. средний поток студентов не постоянен: во время занятий студентов мало, а в перерыве между занятиями число студентов резко возрастает);
  • число землетрясений амплитудой 5 баллов в год в Калифорнии (т.к. одно землетрясение может вызвать повторные толчки сходной амплитуды – события не независимы);
  • число дней, которые пациенты проводят в отделении интенсивной терапии (т.к. число дней, которое пациенты проводят в отделении интенсивной терапии всегда больше 0).

Примечание
: Распределение Пуассона
является приближением более точных дискретных распределений: и .

Примечание
: О взаимосвязи распределения Пуассона
и Биномиального распределения
можно прочитать в статье . О взаимосвязи распределения Пуассона
и Экспоненциального распределения
можно прочитать в статье про .

Круговые диаграммы для иллюстрации распределения

С помощью круговой диаграммы можно иллюстрировать данные, которые находятся в одном столбце или одной строке. Сегмент круга – это доля каждого элемента массива в сумме всех элементов.

С помощью любой круговой диаграммы можно показать распределение в том случае, если

  • имеется только один ряд данных;
  • все значения положительные;
  • практически все значения выше нуля;
  • не более семи категорий;
  • каждая категория соответствует сегменту круга.

На основании имеющихся данных о количестве осадков построим круговую диаграмму.

Доля «каждого месяца» в общем количестве осадков за год:

Круговая диаграмма распределения осадков по сезонам года лучше смотрится, если данных меньше. Найдем среднее количество осадков в каждом сезоне, используя функцию СРЗНАЧ. На основании полученных данных построим диаграмму:

Получили количество выпавших осадков в процентном выражении по сезонам.

В двух словах: Добавляем полосу прокрутки к гистограмме или к графику распределения частот, чтобы сделать её динамической или интерактивной.

Уровень сложности: продвинутый.

На следующем рисунке показано, как выглядит готовая динамическая гистограмма:

Распределение Гаусса

Нормальное распределение получило своё название абсолютно справедливо: по статистике, большинство событий происходят именно с вероятностью нормального распределения, но что это значит? Это означает, например, что когда Вы видите на упаковке хлеба обозначение “Вес: 400±16г” – вес батона имеет нормальное распределение со средним значением 400г и стандартным отклонением 16г.

Таблица нормального распределения

Таблица нормального распределения – это затабулированные значения функции нормального распределения.

Для нахождения вероятности события Z можно воспользоваться таблицей нормального распределения ниже. На пересечении строк (n) и столбцов (m) находится значение вероятности n+m.

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Таблица нормального распределения. Красным выделены часто используемые значения при выборе критической области
0.500 0.504 0.508 0.512 0.516 0.520 0.524 0.528 0.532 0.536
0.1 0.540 0.544 0.548 0.552 0.556 0.560 0.564 0.568 0.571 0.575
0.2 0.579 0.583 0.587 0.591 0.595 0.599 0.603 0.606 0.610 0.614
0.3 0.618 0.622 0.625 0.629 0.633 0.637 0.641 0.644 0.648 0.652
0.4 0.655 0.659 0.663 0.666 0.670 0.674 0.677 0.681 0.684 0.688
0.5 0.692 0.695 0.699 0.702 0.705 0.709 0.712 0.716 0.719 0.722
0.6 0.726 0.729 0.732 0.736 0.739 0.742 0.745 0.749 0.752 0.755
0.7 0.758 0.761 0.764 0.767 0.770 0.773 0.776 0.779 0.782 0.785
0.8 0.788 0.791 0.794 0.797 0.799 0.802 0.805 0.808 0.811 0.813
0.9 0.816 0.819 0.821 0.824 0.826 0.829 0.832 0.834 0.837 0.839
1 0.841 0.844 0.846 0.849 0.851 0.853 0.855 0.858 0.860 0.862
1.1 0.864 0.867 0.869 0.871 0.873 0.875 0.877 0.879 0.881 0.883
1.2 0.885 0.887 0.889 0.891 0.892 0.894 0.896 0.898 0.900 0.901
1.3 0.903 0.905 0.907 0.908 0.910 0.911 0.913 0.915 0.916 0.918
1.4 0.919 0.921 0.922 0.924 0.925 0.926 0.928 0.929 0.931 0.932
1.5 0.933 0.934 0.936 0.937 0.938 0.939 0.941 0.942 0.943 0.944
1.6 0.945 0.946 0.947 0.948 0.950 0.951 0.952 0.953 0.954 0.955
1.7 0.955 0.956 0.957 0.958 0.959 0.960 0.961 0.962 0.963 0.963
1.8 0.964 0.965 0.966 0.966 0.967 0.968 0.969 0.969 0.970 0.971
1.9 0.971 0.972 0.973 0.973 0.974 0.974 0.975 0.976 0.976 0.977
2 0.977 0.978 0.978 0.979 0.979 0.980 0.980 0.981 0.981 0.982
2.1 0.982 0.983 0.983 0.983 0.984 0.984 0.985 0.985 0.985 0.986
2.2 0.986 0.986 0.987 0.987 0.988 0.988 0.988 0.988 0.989 0.989
2.3 0.989 0.990 0.990 0.990 0.990 0.991 0.991 0.991 0.991 0.992
2.4 0.992 0.992 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.994
2.5 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995
2.6 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
2.7 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
2.8 0.997 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
2.9 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999
3 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000

Теорема Купмана-Питмана-Дармуа

Теперь мы наконец готовы сформулировать одно из самых любопытных свойств семейств экспоненциального класса.

В следующей теореме мы опустим некоторые не очень обременительные условия регулярности. Просто считайте, что для хороших дискретных и абсолютно непрерывных распределений, с которыми вы в основном и будете сталкиваться, это так.

Теорема. Пусть $p(x) = \frac1{h(\theta)}\exp\left(\theta^Tu(x)\right)$ – распределение, причём $\theta$ – вектор длины $n$ и $\mathbb{E}u_i(x) = \alpha_i$ для некоторых фиксированных $\alpha_i$, $i=1,\ldots,n$. Тогда распределение $p(x)$ обладает наибольшей энтропией среди распределений с тем же носителем, для которых $\mathbb{E}u_i(x) = \alpha_i$, $i=1,\ldots,n$. При этом оно является единственным с таким свойством (в том смысле, что любое другое распределение, обладающее этим свойством, совпадает с ним почти всюду).

Идея обоснования через оптимизацию.Мы приведём рассуждение для дискретного случая; в абсолютно непрерывном рассуждения будут по сути теми же, только там придётся дифференцировать не по переменных, а по функциям, и мы решили не ввергать читателя в мир вариационного исчисления.

В дискретном случае у нас есть счётное семейство точек $x_1, x_2,\ldots$, и распределение определяется счётным набором вероятностей $p_i$ принимать значение $x_i$. Мы будем решать задачу

$$\begin{cases}
-\sum_j p_j\log{p_j}\longrightarrow\max,\
\sum_jp_ju_i(x_j) = \alpha_i, i = 1,\ldots,n,\
\sum_jp_j = 1,\
p_j\geqslant0
\end{cases}$$

Запишем лагранжиан:

$$\mathcal{L} = \sum_j p_j\log{p_j} + \sum_i\theta_i\left(\alpha_i — \sum_jp_ju_i(x_j)\right)+$$

$$+\theta_0\left(\sum_jp_j — 1\right) — \sum_j\lambda_jp_j$$

Продифференцируем его по $p_j$:

$$\frac{\partial\mathcal{L}}{\partial p_j} = \log{p_j} + 1 — \sum_i\theta_iu_i(x_j) + \theta_0 — \lambda_j$$

Приравнивая это к нулю, получаем

$$p_j = \frac{\exp\left(\langle \theta, u(x_j)\rangle\right)}{\exp\left(\lambda_j — \theta_0 — 1\right)}$$

Числитель уже ровно такой, как и должен быть у распределения из экспоненциального класса; разберёмся со знаменателем. Во-первых, легко видеть, что условие $p_j\geqslant0$ заведомо выполнено (ведь тут сплошные экспоненты), так что его можно было выкинуть из постановки задачи оптимизации или, что то же самое, положить $\lambda_j = 0$. Параметр $\theta_0$ находится из условия $\sum_jp_j = 1$, а точнее, выражается через остальные $\theta_i$, что позволяет записать знаменатель в виде $h(\theta)$.

Идея доказательства «в лоб».Как и следовало ожидать, оно ничем не отличается от того, как мы доказывали максимальность энтропии у равномерного или нормального распределения. Пусть $q(x)$ – ещё одно распределение, для которого

$$\int u_i(x)q(x)dx = \int u_i(x)p(x)dx$$

для всех $i = 1,\ldots,n$. Тогда

$$0\leqslant KL(q\vert\vert p) = \int q(x)\log\left(\frac{q(x)}{p(x)}\right)dx = $$

$$=\underbrace{\int q(x)\log{q(x)}dx}_{-H(q)} — \int q(x)\log{p(x)}dx=$$

$$=-H(q) — \int q(x)\left(-\log{h(\theta)} + \sum_i\theta_iu_i(x)\right)dx =$$

$$=-H(q) — \log{h(\theta)}\underbrace{\int q(x)dx}_{=1=\int p(x)dx} — \sum_i\theta_i\underbrace{\int q(x)u_i(x)dx}_{=\int p(x)u_i(x)dx} =$$

$$=-H(q) — \int p(x)\left(-\log{h(\theta)} + \sum_i\theta_iu_i(x)\right)dx =$$

$$=-H(q) + \int p(x)\log{p(x)}dx = -H(q) + H(p)$$

Таким образом, $H(p)\geqslant H(q)$, причём по уже не раз использованному нами свойству дивергенции Кульбака-Лейблера из $H(p) = H(q)$ будет следовать то, что $p$ и $q$ совпадают почти всюду.

Рассмотрим несколько примеров:

Пример 1. Среди распределений на множестве ${1,2,3,\ldots}$ неотрицательных целых чисел с заданным математическим ожиданием $\mu$ найдём распределение с максимальной энтропией.

В данном случае у нас лишь одна функция $u_1(x) = x$, которая соответствует фиксации матожидания $\mathbb{E}x$. Плотность будет вычисляться только в точках $x=k$, $k=1,2,\ldots$ и будет иметь вид

$$p_k = p(k) = \frac1{h(\theta)}\exp\left(\theta k\right)$$

В этой формуле уже безошибочно угадывается геометрическое распределение с $p = 1 — e^{\theta}$. Параметр $p$ можно подобрать из соображений того, что математическое ожидание равно $\mu$. Матожидание геометрического распределения равно $\frac1p$, так что $p = \frac1{\mu}$. Окончательно,

$$p_k = \frac1{\mu}\left(1 — \frac1{\mu}\right)^{k-1}$$

Пример 2. Среди распределений на всей вещественной прямой с заданным математическим ожиданием $\mu$ найдём распределение с максимальной энтропией.

Нормальное распределение. Построение графика в Excel. Концепция шести сигм

Наверное, не все знают, что в Excel есть встроенная функция для построения нормального распределения. Графики нормального распределения часто используются для демонстрации идей статистической обработки данных.

Функция НОРМРАСП имеет следующий синтаксис:

НОРМРАСП (Х; среднее; стандартное_откл; интегральная)

Х — аргумент функции; фактически НОРМРАСП можно трактовать как y=f(x); при этом функция возвращает вероятность реализации события Х

Среднее (µ) — среднее арифметическое распределения; чем дальше Х от среднего, тем ниже вероятность реализации такого события

Стандартное_откл (σ) — стандартное отклонение распределения; мера кучности; чем меньше σ, тем выше вероятность у тех Х, которые расположены ближе к среднему

Интегральная — логическое значение, определяющее форму функции. Если «интегральная» имеет значение ИСТИНА, функция НОРМРАСП возвращает интегральную функцию распределения, тот есть суммарную вероятность всех событий для аргументов от -∞ до Х; если «интегральная» имеет значение ЛОЖЬ, возвращается вероятность реализации события Х, точнее говоря, вероятность событий находящихся в некотором диапазоне вокруг Х

Например, для µ=0 имеем:

Скачать заметку в формате Word, пример в формате Excel

Здесь по оси абсцисс единица измерения – σ, или (что то же самое), можно сказать, что график построен для σ = 1. То есть, «-2» на графике означает -2σ. По оси ординат шкала убрана умышленно, так как она лишена смысла. Точнее говоря, высота кривой зависит от плотности точек на оси абсцисс, по которым мы строим график. Например, если на интервал от 0 до 1σ приходится 10 точек, то высота в максимуме составит 4%, а если 20 точек – 2%. Здесь проценты означают вероятность попадания случайной величины в узкий диапазон окрестности точки на оси абсцисс. Зато имеет смысл площадь под кривой на определенном интервале. И эта площадь не зависит от плотности точек. Так, например, площадь под кривой на интервале от 0 до 1σ составляет 34,13%. Это значение можно интерпретировать следующим образом: с вероятностью 68,26% случайная величина Х попадет в диапазон µ ± σ.

Теперь, наверное, вам будет лучше понятен смысл выражения «качество шести сигм». Оно означает, что производство налажено таким образом, что случайная величина Х (например, диаметр вала) находясь в диапазон µ ± 6σ, всё еще удовлетворяет техническим условиям (допускам). Это достигается за счет значительного уменьшения сигмы, то есть случайная величина Х очень близка к нормативному значению µ. На графике ниже представлено три ситуации, когда границы допуска остаются неизменными, а благодаря повышению качества (уменьшению вариабельности, сужению сигма) доля брака сокращается:

На первом рисунке только 1,5σ попадают в границы допуска, то есть только 86,6% деталей являются годными. На втором рисунке уже 3σ попадают в границы допуска, то есть 99,75% являются годными. Но всё еще 25 деталей из каждых 10 000 произведенных являются браком. На третьем рисунке целых 6σ попадают в границы допуска, то есть в брак попадут только две детали на миллиард изготовленных!

Вообще-то говоря, измерение качества в терминах сигм использует не совсем нормальное распределение. Вот что пишет на эту тему Википедия:

Опыт показывает, что показатели процессов имеют тенденцию изменяться с течением времени. В результате со временем в промежуток между границами поля допуска будет входить меньше, чем было установлено первоначально. Опытным путём было установлено, что изменение параметров во времени можно учесть с помощью смещения в 1,5 сигма. Другими словами, с течением времени длина промежутка между границами поля допуска под кривой нормального распределения уменьшается до 4,5 сигма вследствие того, что среднее процесса с течением времени смещается и/или среднеквадратическое отклонение увеличивается.

Широко распространённое представление о «процессе шесть сигма» заключается в том, что такой процесс позволяет получить уровень качества 3,4 дефектных единиц на миллион готовых изделий при условии, что длина под кривой слева или справа от среднего будет соответствовать 4,5 сигма (без учёта левого или правого конца кривой за границей поля допуска). Таким образом, уровень качества 3,4 дефектных единиц на миллион готовых изделий соответствует длине промежутка 4,5 сигма, получаемых разницей между 6 сигма и сдвигом в 1,5 сигма, которое было введено, чтобы учесть изменение показателей с течением времени. Такая поправка создана для того, чтобы предупредить неправильною оценку уровня дефектности, встречающееся в реальных условиях.

С моей точки зрения, не вполне внятное объяснение. Тем не менее, во всем мире принята следующая таблица соответствия числа дефектов и уровня качества в сигмах:

Задача

Типичным применением Распределения Пуассона
в контроле качества является модель количества дефектов, которые могут появиться в приборе или устройстве.

Например, при среднем количестве дефектов в микросхеме λ (лямбда) равном 4, вероятность, что случайно выбранная микросхема будет иметь 2 или меньше дефектов, равна: =ПУАССОН.РАСП(2;4;ИСТИНА)=0,2381

Третий параметр в функции установлен = ИСТИНА, поэтому функция вернет интегральную функцию распределения
, то есть вероятность того, что число случайных событий окажется в диапазоне от 0 до 4 включительно.

Вычисления в этом случае производятся по формуле:

Вероятность того, что случайно выбранная микросхема будет иметь ровно 2 дефекта, равна: =ПУАССОН.РАСП(2;4;ЛОЖЬ)=0,1465

Третий параметр в функции установлен = ЛОЖЬ, поэтому функция вернет плотность вероятности.

Вероятность того, что случайно выбранная микросхема будет иметь больше 2-х дефектов, равна: =1-ПУАССОН.РАСП(2;4;ИСТИНА) =0,8535

Примечание
: Если x
не является целым числом, то при вычислении формулы . Формулы =ПУАССОН.РАСП(2
; 4; ЛОЖЬ)
и =ПУАССОН.РАСП(2,9
; 4; ЛОЖЬ)
вернут одинаковый результат.

Как сделать экспоненциальный график в excel

В этой статье описаны синтаксис формулы и использование функции EXP в Microsoft Excel.

Описание

Возвращает число e, возведенное в указанную степень. Число e равно 2,71828182845904 и является основанием натурального логарифма.

Синтаксис

Аргументы функции EXP описаны ниже.

Число — обязательный аргумент. Показатель степени, в которую возводится основание e.

Замечания

Чтобы вычислить степень с другим основанием, используйте оператор возведения в степень (^).

Функция EXP является обратной по отношению к функции LN, т. е. к натуральному логарифму числа.

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Задачи

Решения задач приведены в файле примера на листе Пример
.

Задача1
. Нефтяная компания бурит скважины для добычи нефти. Вероятность обнаружить нефть в скважине равна 20%. Какова вероятность, что первая нефть будет получена именно в третью попытку? Какова вероятность, что для обнаружения первой нефти потребуется три попытки?Решение1
: =ОТРБИНОМ.РАСП(3-1; 1; 0,2; ЛОЖЬ) =ОТРБИНОМ.РАСП(3-1; 1; 0,2; ИСТИНА)

Задача2
. Рейтинговое агентство делает опрос случайных прохожих в городе о любимой марке автомобиля. Пусть известно, что у 1% горожан любимым автомобилем является Lada
Granta
. Какова вероятность, что встретить первого почитателя этой марки автомобиля после опроса 10 человек?Решение2
: =ОТРБИНОМ.РАСП(10-1; 1; 0,01; ИСТИНА
)=9,56%

Шаг № 3: Установите значения оси X для кривой.

По сути, диаграмма представляет собой огромное количество интервалов (представьте их как шаги), соединенных линией, чтобы создать плавную кривую.

В нашем случае значения оси X будут использоваться для иллюстрации конкретной оценки экзамена, а значения оси Y будут указывать нам вероятность того, что студент получит этот результат на экзамене.

Технически вы можете включить столько интервалов, сколько захотите — вы можете легко стереть избыточные данные позже, изменив масштаб горизонтальной оси. Просто убедитесь, что вы выбрали диапазон, включающий три стандартных отклонения.

Давайте начнем подсчет с одного (так как студент не может получить отрицательный результат на экзамене) и дойдем до 150 — неважно, 150 это или 1500 — чтобы создать еще одну вспомогательную таблицу

  1. Выберите любую пустую ячейку под данными диаграммы (например, E4) и введите “1,” значение, определяющее первый интервал.
  2. Перейдите к Дом таб.
  3. в Редактирование группа, выберите «Наполнять.”
  4. Под «Серия в,» Выбрать «Столбец.”
  5. Для «Значение шага,» тип “1.” Это значение определяет приращения, которые будут автоматически добавляться, пока Excel не достигнет последнего интервала.
  6. Для «Стоп-значение,» тип «150,” значение, которое соответствует последнему интервалу, и нажмите «OK.”

Чудом 149 ячеек в столбце E (E5: E153) были заполнены значениями от 2 до 150.

ПРИМЕЧАНИЕ. Не скрывайте исходные ячейки данных, как показано на снимках экрана.. В противном случае методика не сработает.

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: