Эксцесс: определение, виды, формулы, для чего это, например

Статистика excel для seo и анализа данных

Надстройка Пакет анализа

В надстройке Пакет анализа для вычисления ковариации и корреляции имеются одноименные инструменты анализа .

После вызова инструмента появляется диалоговое окно, которое содержит следующие поля:

Надстройка возвращает вычисленные значения корреляции и ковариации (для ковариации также вычисляются дисперсии обоих случайных величин).

  • Неподдерживаемый формат видео попробуйте установить adobe flash

      

  • Положение о премировании word

      

  • Проверить наличие способа исправления ошибки в интернете позднее и закрыть программу

      

  • Прошить huawei y6 2019

      

  • Браузеры vivaldi где хранятся пароли

Среднеквадратичное отклонение — что это

Стандартное (или среднеквадратичное) отклонение – это квадратный корень из дисперсии. В свою очередь, под последним термином подразумевается степень разброса значений. Для получения дисперсии, и, как следствие, ее производного в виде стандартного отклонения, существует специальная формула, которая, впрочем, нам не так важна. Она довольно сложная по своей структуре, но при этом ее можно полностью автоматизировать средствами Excel. Главное – знать, какие параметры нужно передавать функции. В целом как для вычисления дисперсии, так и стандартного отклонения, аргументы используются одинаковые.

  1. Сначала мы получаем среднее арифметическое.
  2. После этого каждое исходное значение сопоставляется со средним и определяется разница между ними.
  3. После этого каждая разница возводится во вторую степень, после чего получившиеся результаты складываются между собой.
  4. Наконец, финальный шаг – деление получившегося значения на общее количество элементов в данной выборке.

Получив разницу между одним значением и средним арифметическим всей выборки, мы можем узнать расстояние к нему от определенной точки на координатной прямой. Начинающему человеку вся логика понятна равно до третьего шага. Зачем возводить значение в квадрат? Дело в том, что иногда разница может быть отрицательной, а нам нужно получить положительное число. И, как известно, минус на минус дает плюс. А далее нам нужно определить среднее арифметическое из получившихся значений. Дисперсия имеет несколько свойств:

  1. Если выводить дисперсию из одного числа, то она всегда будет равняться нулю.
  2. Если случайное число умножить на константу А, то дисперсия увеличится в количество раз, равное А в квадрате. Проще говоря, константу можно вынести за знак дисперсии и возвести его во вторую степень.
  3. Если к произвольному числу добавить константу А или же отнять ее, то дисперсия от этого не поменяется.
  4. Если два случайных числа, обозначаемых, к примеру переменными X и Y не зависят друг от друга, то в таком случае для них справедлива формула. D(X+Y) = D(X) + D(Y)
  5. Если же в предыдущую формулу внести изменения и пытаться определить дисперсию разницы этих значений, то она также будет составлять сумму этих дисперсий.

Среднеквадратическое отклонение – это математический термин, являющийся производным от дисперси. Получить его очень просто: достаточно извлечь квадратный корень из дисперсии.

Разница между дисперсией и стандартным отклонением находится сугубо в плоскости единиц измерения, если можно так выразиться. Стандартное отклонение является значительно более простым для считывания показателем, поскольку оно показывается не в квадратах числа, а непосредственно в значениях. Простыми словами, если в числовой последовательности 1,2,3,4,5 средним арифметическим является 3, то соответственно, стандартным отклонением будет число 1,58. Это говорит о том, что в среднем одно число отклоняется от среднего числа (которым является тройка в нашем примере), на 1,58.

Дисперсия же будет тем же самым числом, только возведенным в квадрат. В нашем примере – чуть меньше, чем 2,5. В принципе, можно использовать как дисперсию, так и стандартное отклонение для статистических расчетов, только надо четко знать, с каким именно показателем пользователь работает.

Нормальное распределение. Построение графика в Excel. Концепция шести сигм

Наверное, не все знают, что в Excel есть встроенная функция для построения нормального распределения. Графики нормального распределения часто используются для демонстрации идей статистической обработки данных.

Функция НОРМРАСП имеет следующий синтаксис:

НОРМРАСП (Х; среднее; стандартное_откл; интегральная)

Х — аргумент функции; фактически НОРМРАСП можно трактовать как y=f(x); при этом функция возвращает вероятность реализации события Х

Среднее (µ) — среднее арифметическое распределения; чем дальше Х от среднего, тем ниже вероятность реализации такого события

Стандартное_откл (σ) — стандартное отклонение распределения; мера кучности; чем меньше σ, тем выше вероятность у тех Х, которые расположены ближе к среднему

Интегральная — логическое значение, определяющее форму функции. Если «интегральная» имеет значение ИСТИНА, функция НОРМРАСП возвращает интегральную функцию распределения, тот есть суммарную вероятность всех событий для аргументов от -∞ до Х; если «интегральная» имеет значение ЛОЖЬ, возвращается вероятность реализации события Х, точнее говоря, вероятность событий находящихся в некотором диапазоне вокруг Х

Например, для µ=0 имеем:

Скачать заметку в формате Word, пример в формате Excel

Здесь по оси абсцисс единица измерения – σ, или (что то же самое), можно сказать, что график построен для σ = 1. То есть, «-2» на графике означает -2σ. По оси ординат шкала убрана умышленно, так как она лишена смысла. Точнее говоря, высота кривой зависит от плотности точек на оси абсцисс, по которым мы строим график. Например, если на интервал от 0 до 1σ приходится 10 точек, то высота в максимуме составит 4%, а если 20 точек – 2%. Здесь проценты означают вероятность попадания случайной величины в узкий диапазон окрестности точки на оси абсцисс. Зато имеет смысл площадь под кривой на определенном интервале. И эта площадь не зависит от плотности точек. Так, например, площадь под кривой на интервале от 0 до 1σ составляет 34,13%. Это значение можно интерпретировать следующим образом: с вероятностью 68,26% случайная величина Х попадет в диапазон µ ± σ.

Теперь, наверное, вам будет лучше понятен смысл выражения «качество шести сигм». Оно означает, что производство налажено таким образом, что случайная величина Х (например, диаметр вала) находясь в диапазон µ ± 6σ, всё еще удовлетворяет техническим условиям (допускам). Это достигается за счет значительного уменьшения сигмы, то есть случайная величина Х очень близка к нормативному значению µ. На графике ниже представлено три ситуации, когда границы допуска остаются неизменными, а благодаря повышению качества (уменьшению вариабельности, сужению сигма) доля брака сокращается:

На первом рисунке только 1,5σ попадают в границы допуска, то есть только 86,6% деталей являются годными. На втором рисунке уже 3σ попадают в границы допуска, то есть 99,75% являются годными. Но всё еще 25 деталей из каждых 10 000 произведенных являются браком. На третьем рисунке целых 6σ попадают в границы допуска, то есть в брак попадут только две детали на миллиард изготовленных!

Вообще-то говоря, измерение качества в терминах сигм использует не совсем нормальное распределение. Вот что пишет на эту тему Википедия:

Опыт показывает, что показатели процессов имеют тенденцию изменяться с течением времени. В результате со временем в промежуток между границами поля допуска будет входить меньше, чем было установлено первоначально. Опытным путём было установлено, что изменение параметров во времени можно учесть с помощью смещения в 1,5 сигма. Другими словами, с течением времени длина промежутка между границами поля допуска под кривой нормального распределения уменьшается до 4,5 сигма вследствие того, что среднее процесса с течением времени смещается и/или среднеквадратическое отклонение увеличивается.

Широко распространённое представление о «процессе шесть сигма» заключается в том, что такой процесс позволяет получить уровень качества 3,4 дефектных единиц на миллион готовых изделий при условии, что длина под кривой слева или справа от среднего будет соответствовать 4,5 сигма (без учёта левого или правого конца кривой за границей поля допуска). Таким образом, уровень качества 3,4 дефектных единиц на миллион готовых изделий соответствует длине промежутка 4,5 сигма, получаемых разницей между 6 сигма и сдвигом в 1,5 сигма, которое было введено, чтобы учесть изменение показателей с течением времени. Такая поправка создана для того, чтобы предупредить неправильною оценку уровня дефектности, встречающееся в реальных условиях.

С моей точки зрения, не вполне внятное объяснение. Тем не менее, во всем мире принята следующая таблица соответствия числа дефектов и уровня качества в сигмах:

Анализ соотношения цены и спроса по коэффициенту ЭКСЦЕСС в Excel

Пример 1. Проверить теорию о том, что с уменьшением цен на бензин объемы покупок увеличиваются. В таблице представлены сведения о цене и объемах потребления топлива для одной заправочной станции по дням.

Вид таблицы данных:

Для расчета эксцесса используем данные из столбца C. Вид формулы:

Небольшой отрицательный эксцесс свидетельствует о том, что фактический рост объемов покупок оказался ниже ожидаемого, меньше 14%.

Для наглядного примера выполним визуализацию исходных данных с помощью линейного графика:

Сложность использования функции ЭКСЦЕСС заключается в правильной трактовке полученных значений. Для формулировки более достоверных выводов в отношении исследуемых данных рассчитывают другие статистические показатели.

Вычисление дисперсии

Дисперсия – это показатель вариации, который представляет собой средний квадрат отклонений от математического ожидания. Таким образом, он выражает разброс чисел относительно среднего значения. Вычисление дисперсии может проводиться как по генеральной совокупности, так и по выборочной.

Способ 1: расчет по генеральной совокупности

Для расчета данного показателя в Excel по генеральной совокупности применяется функция ДИСП.Г. Синтаксис этого выражения имеет следующий вид:

Всего может быть применено от 1 до 255 аргументов. В качестве аргументов могут выступать, как числовые значения, так и ссылки на ячейки, в которых они содержатся.

Посмотрим, как вычислить это значение для диапазона с числовыми данными.

  1. Производим выделение ячейки на листе, в которую будут выводиться итоги вычисления дисперсии. Щелкаем по кнопке «Вставить функцию», размещенную слева от строки формул.
  2. Запускается Мастер функций. В категории «Статистические» или «Полный алфавитный перечень» выполняем поиск аргумента с наименованием «ДИСП.Г». После того, как нашли, выделяем его и щелкаем по кнопке «OK».
  3. Выполняется запуск окна аргументов функции ДИСП.Г. Устанавливаем курсор в поле «Число1». Выделяем на листе диапазон ячеек, в котором содержится числовой ряд. Если таких диапазонов несколько, то можно также использовать для занесения их координат в окно аргументов поля «Число2», «Число3» и т.д. После того, как все данные внесены, жмем на кнопку «OK».
  4. Как видим, после этих действий производится расчет. Итог вычисления величины дисперсии по генеральной совокупности выводится в предварительно указанную ячейку. Это именно та ячейка, в которой непосредственно находится формула ДИСП.Г.

Урок: Мастер функций в Эксель

Способ 2: расчет по выборке

В отличие от вычисления значения по генеральной совокупности, в расчете по выборке в знаменателе указывается не общее количество чисел, а на одно меньше. Это делается в целях коррекции погрешности. Эксель учитывает данный нюанс в специальной функции, которая предназначена для данного вида вычисления – ДИСП.В. Её синтаксис представлен следующей формулой:

Количество аргументов, как и в предыдущей функции, тоже может колебаться от 1 до 255.

  1. Выделяем ячейку и таким же способом, как и в предыдущий раз, запускаем Мастер функций.
  2. В категории «Полный алфавитный перечень» или «Статистические» ищем наименование «ДИСП.В». После того, как формула найдена, выделяем её и делаем клик по кнопке «OK».
  3. Производится запуск окна аргументов функции. Далее поступаем полностью аналогичным образом, как и при использовании предыдущего оператора: устанавливаем курсор в поле аргумента «Число1» и выделяем область, содержащую числовой ряд, на листе. Затем щелкаем по кнопке «OK».
  4. Результат вычисления будет выведен в отдельную ячейку.

Урок: Другие статистические функции в Эксель

Как видим, программа Эксель способна в значительной мере облегчить расчет дисперсии. Эта статистическая величина может быть рассчитана приложением, как по генеральной совокупности, так и по выборке. При этом все действия пользователя фактически сводятся только к указанию диапазона обрабатываемых чисел, а основную работу Excel делает сам. Безусловно, это сэкономит значительное количество времени пользователей.

Применение XYZ анализа при подготовке данных к прогнозу

Работая с большим массивом данных при подготовке данных к прогнозу, необходим индикатор, который будет подсказывать, на какие временные ряды в первую очередь стоит обратить внимание. В качестве индикатора вы можете использовать «коэффициент вариации» или XYZ анализ

Если коэффициент вариации больше 10 — 25% или для Y и Z рядов, то изучаем данные (например, продажи товара по месяцам в разрезе направлений продаж) и определяем факторы, повлиявшие на отклонение.

Добавляем фильтр на столбец XYZ анализ и анализируем ряды.

Сначала отфильтруем ряды с коэффициентом вариации больше 25% или Z

Изучаем ряды с большими отклонениями фактических данных за последние 4-5 месяцев. Определяем причины провалов или резких подъёмов продаж. Готовим данные для прогноза.  Очищаем данные от влияния случайных факторов или корректируем дефицит. 

Также, если в ряду большая неоднородность, то имеет смысл группировать временной ряд. Например,

  • Неоднородные продажи по месяцам свернуть до продаж по кварталам,
  • Продажи по неделям свернуть до продаж по месяцам,
  • Продажи по товарам свернуть до товарных групп…

Сделать прогноз по однородной группе более высокого уровня, а затем распределить пропорционально логики внутри группы. 

О том, как сгруппировать временной ряд, читайте статью «Как сделать сводную и сгруппировать временные ряды?»

Затем выделяем ряды с коэффициентом вариации Y

Аналогично просматриваем каждый ряд, и в случае, если замечаете нестандартное поведение ряда, выявляете причины и в случае необходимости очищаете данные.

Рекомендуем создать список факторов (например, акции по стимулированию сбыта, отсутствие товара на складе, спец клиенты…), и для каждого из факторов определить показатель, который вычитаем или прибавляем к данным для прогноза.

После того, как данные очищены от факторов, которые в будущем не повторятся и  подготовлены для прогноза, мы рассчитываем прогноз продаж.

Теперь при расчете прогноза на большом количестве временных рядов, вы можете придерживаться следующей схемы:

  1. Рассчитываем коэффициент вариации;
  2. Делаем XYZ анализ;
  3. Готовим данные для прогноза (очищаем от случайных факторов или группируем временные ряды);
  4. Строим прогноз;
  5. Учитываем дополнительные факторы в прогнозе;

  • Novo Forecast Lite — автоматический расчет прогноза в Excel.
  • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

Вычисление дисперсии

Дисперсия – это показатель вариации, который представляет собой средний квадрат отклонений от математического ожидания. Таким образом, он выражает разброс чисел относительно среднего значения. Вычисление дисперсии может проводиться как по генеральной совокупности, так и по выборочной.

Способ 1: расчет по генеральной совокупности

Для расчета данного показателя в Excel по генеральной совокупности применяется функция ДИСП.Г. Синтаксис этого выражения имеет следующий вид:

Всего может быть применено от 1 до 255 аргументов. В качестве аргументов могут выступать, как числовые значения, так и ссылки на ячейки, в которых они содержатся.

Посмотрим, как вычислить это значение для диапазона с числовыми данными.

  1. Производим выделение ячейки на листе, в которую будут выводиться итоги вычисления дисперсии. Щелкаем по кнопке «Вставить функцию», размещенную слева от строки формул.
  2. Запускается Мастер функций. В категории «Статистические» или «Полный алфавитный перечень» выполняем поиск аргумента с наименованием «ДИСП.Г». После того, как нашли, выделяем его и щелкаем по кнопке «OK».
  3. Выполняется запуск окна аргументов функции ДИСП.Г. Устанавливаем курсор в поле «Число1». Выделяем на листе диапазон ячеек, в котором содержится числовой ряд. Если таких диапазонов несколько, то можно также использовать для занесения их координат в окно аргументов поля «Число2», «Число3» и т.д. После того, как все данные внесены, жмем на кнопку «OK».
  4. Как видим, после этих действий производится расчет. Итог вычисления величины дисперсии по генеральной совокупности выводится в предварительно указанную ячейку. Это именно та ячейка, в которой непосредственно находится формула ДИСП.Г.

Урок: Мастер функций в Эксель

Способ 2: расчет по выборке

В отличие от вычисления значения по генеральной совокупности, в расчете по выборке в знаменателе указывается не общее количество чисел, а на одно меньше. Это делается в целях коррекции погрешности. Эксель учитывает данный нюанс в специальной функции, которая предназначена для данного вида вычисления – ДИСП.В. Её синтаксис представлен следующей формулой:

Количество аргументов, как и в предыдущей функции, тоже может колебаться от 1 до 255.

  1. Выделяем ячейку и таким же способом, как и в предыдущий раз, запускаем Мастер функций.
  2. В категории «Полный алфавитный перечень» или «Статистические» ищем наименование «ДИСП.В». После того, как формула найдена, выделяем её и делаем клик по кнопке «OK».
  3. Производится запуск окна аргументов функции. Далее поступаем полностью аналогичным образом, как и при использовании предыдущего оператора: устанавливаем курсор в поле аргумента «Число1» и выделяем область, содержащую числовой ряд, на листе. Затем щелкаем по кнопке «OK».
  4. Результат вычисления будет выведен в отдельную ячейку.

Урок: Другие статистические функции в Эксель

Как видим, программа Эксель способна в значительной мере облегчить расчет дисперсии. Эта статистическая величина может быть рассчитана приложением, как по генеральной совокупности, так и по выборке. При этом все действия пользователя фактически сводятся только к указанию диапазона обрабатываемых чисел, а основную работу Excel делает сам. Безусловно, это сэкономит значительное количество времени пользователей.

Мы рады, что смогли помочь Вам в решении проблемы.

Помогла ли вам эта статья?

Да Нет

Дисперсия — это мера рассеяния, описывающая сравнительное отклонение между значениями данных и средней величиной. Является наиболее используемой мерой рассеяния в статистике, вычисляемая путем суммирования, возведенного в квадрат, отклонения каждого значения данных от средней величины. Формула для вычисления дисперсии представлена ниже:

где:

s2 – дисперсия выборки;

xср — среднее значение выборки;

n размер выборки (количество значений данных),

(xi – xср) — отклонение от средней величины для каждого значения набора данных.

Для лучшего понимания формулы, разберем пример. Я не очень люблю готовку, поэтому занятием этим занимаюсь крайне редко. Тем не менее, чтобы не умереть с голоду, время от времени мне приходится подходить к плите  для реализации замысла по насыщению моего организма белками, жирами и углеводами. Набор данных, редставленный ниже, показывает, сколько раз Ренат готовит пищу каждый месяц:

Первым шагом при вычислении дисперсии является определение среднего значения выборки, которое в нашем примере равняется 7,8 раза в месяц. Остальные вычисления можно облегчить с помощью следующей таблицы.

Финальная фаза вычисления дисперсии выглядит так:

Для тех, кто любит производить все вычисления за один раз, уравнение будет выглядеть следующим образом:

Когда нормальное распределение не выглядит нормальным

В предыдущих статьях мы рассмотрели нормальное распределение (также известное как распределение Гаусса) как идеализированное математическое распределение и как гистограмму, полученную из эмпирических данных. Если измеряемое явление характеризуется нормальным распределением значений, форма гистограммы по мере увеличения размера выборки будет всё больше похожа на колоколообразную (гауссову) кривую.

Однако это приводит нас к интересному вопросу: как мы узнаем, что явление характеризуется нормальным распределением значений?

Если у нас есть большой объем данных, мы можем просто посмотреть на гистограмму и сравнить ее с гауссовой кривой. Однако с меньшими наборами данных ситуация будет сложнее. Даже если мы анализируем базовый процесс, который действительно создает нормально распределенные данные, гистограммы, созданные из небольших наборов данных, могут оставлять место для сомнений.

Рисунок 1 – Распределены ли эти данные нормально?

В данной статье мы обсудим два описательных статистических показателя (асимметрию и эксцесс), которые помогут нам определить, соответствуют ли наши данные нормальному распределению.

Однако сначала я хочу изучить связанный с этим вопрос: почему нас волнует, соответствует ли набор данных нормальному распределению?

Замечания

Аргументы могут быть либо числами, либо содержащими числа именами, массивами или ссылками.

Учитываются логические значения и текстовые представления чисел, которые непосредственно введены в список аргументов.

Если аргумент, который является массивом или ссылкой, содержит текст, логические значения или пустые ячейки, то такие значения пропускаются; однако ячейки, которые содержат нулевые значения, учитываются.

Аргументы, которые представляют собой значения ошибок или текст, не преобразуемый в числа, приводят к возникновению ошибки.

Уравнение для асимметрии имеет следующий вид:

Скользящее среднее (moving average) и линейная регрессия (linear regression) для прогнозирования

Мы часто встречаем такие графики, как расположенный выше. На них могут быть представлены продажи, посещения и т.д. И они всегда выглядят именно так: прямая, идущая вверх-вниз. В такой картине данных присутствует много шума, который мы хотим сгладить для лучшего понимания данных.

Решением является скользящее среднее! Данный метод обычно используется трейдерами для прогнозирования цен акций, которые сегодня могут взлететь вверх, а уже завтра обвалиться.

Давайте разберемся, как мы можем использовать данный метод.

Шаг 1:

Экспортируйте в Excel число посещений/продаж за долгий период времени, например, один-два года.

Шаг 2:

Данные-> Анализ данных -> Скользящее среднее ->OK

Входной интервал — это столбец с числом посещений.

Интервал — это количество дней для которых вычисляется среднее. Вам нужно создать одно скользящее среднее с большим числом, например, 30 и одно с меньшим числом, например, 7.

Выходной интервал — это столбец справа от столбца посещений.

Повторите данные шаги для интервала в 7 дней.

Теперь ваши данные выглядят примерно так:

Если вы выберете все столбцы и построите линейный график, вы получите следующее:

В таком представлении данных меньше шума, их легче анализировать и можно увидеть некоторые тренды. Зеленая линия визуально немного облегчает график, но она реагирует на почти каждое крупное событие. Тогда как красная линия является более стабильной, она отражает реальный тренд.

В конце линейного графика вы увидите такие значения, как Прогноз. Это прогнозируемые данные, выведенные на основе предыдущих трендов.

В Excel есть два способа создать линейную регрессию, используя формулу =FORECAST(x,known_y’s, known_x’s), где «означает дату, для которой вы создаете прогноз; «known_y’s» — это столбец посещений, «known_x’s» — столбец с датами. Данный метод не так уж сложен, но есть более простой способ сделать то же самое.

Выделив весь столбец посещений и потянув вниз за край, автоматически сгенерируется прогноз на следующие даты.

Убедитесь в том, что вы выбрали весь набор данных для того, чтобы результат был точный.

Существует теория при сравнении скользящего среднего для 7дней и 30дней. Как было сказано выше линия 7дней реагирует практически на все основные изменения, в то время как линии 30дней требуется больше времени, чтобы изменить свое направление. Как правило, когда скользящее среднее 7дней пересекает скользящее среднее 30дней, вы можете рассчитывать на существенное изменение, которое будет длиться дольше, чем день или два. Как можно увидеть выше, 6 апреля скользящее среднее 7дней пересекает скользящее среднее 30дней, число посещений снижается, у 6 июня линии снова пересекаются и тренды идут вверх. Этот метод полезен, когда вы теряете трафик и не уверены, тренд ли это или всего лишь суточные колебания.

-Критерий стьюдента для уравнения множественной регрессии.

Частный
-критерий
оценивает значимость коэффициентов
чистой регрессии. Зная величину,
можно определить и-критерий
для коэффициента регрессии при-м
факторе,,
а именно:

.
(2.24)

Оценка значимости коэффициентов чистой
регрессии по
-критерию
Стьюдента может быть проведена и без
расчета частных-критериев.
В этом случае, как и в парной регрессии,
для каждого фактора используется
формула:

,
(2.25)

где
– коэффициент чистой регрессии при
факторе,– средняя квадратическая (стандартная)
ошибка коэффициента регрессии.

Для уравнения множественной регрессии
средняя квадратическая ошибка коэффициента
регрессии может быть определена по
следующей формуле:

,
(2.26)

где
,– среднее квадратическое отклонение
для признака,– коэффициент детерминации для
уравнения множественной регрессии,– коэффициент детерминации для
зависимости факторасо всеми другими факторами уравнения
множественной регрессии;– число степеней свободы для остаточной
суммы квадратов отклонений.

Как видим, чтобы воспользоваться данной
формулой, необходимы матрица межфакторной
корреляции и расчет по ней соответствующих
коэффициентов детерминации
.
Так, для уравненияоценка значимости коэффициентов
регрессии,,предполагает расчет трех межфакторных
коэффициентов детерминации:,,.

Взаимосвязь показателей частного
коэффициента корреляции, частного
-критерия
и-критерия
Стьюдента для коэффициентов чистой
регрессии может использоваться в
процедуре отбора факторов. Отсев факторов
при построении уравнения регрессии
методом исключения практически можно
осуществлять не только по частным
коэффициентам корреляции, исключая на
каждом шаге фактор с наименьшим незначимым
значением частного коэффициента
корреляции, но и по величинами.
Частный-критерий
широко используется и при построении
модели методом включения переменных и
шаговым регрессионным методом.

На данном примере рассмотрим, как оценивается надежность полученного уравнение регрессии. Этот же тест используется для проверки гипотезы о том, что коэффициенты регрессии одновременно равны нулю, a=0 , b=0 . Другими словами, суть расчетов — ответить на вопрос: можно ли его использовать для дальнейшего анализа и прогнозов?

Для установления сходства или различия дисперсий в двух выборках используйте данный t-критерий .

Итак, целью анализа является получение некоторой оценки, с помощью которой можно было бы утверждать, что при некотором уровне α полученное уравнение регрессии — статистически надежно. Для этого используется коэффициент детерминации R 2
.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k 1 =(m) и k 2 =(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3

Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2 (или через функцию Excel FРАСПОБР(вероятность;1;n-2)).
F табл — это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α — вероятность отвергнуть правильную гипотезу при условии, что она верна

Обычно α принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k 1 =1 и k 2 =48, F табл = 4

Выводы
: Поскольку фактическое значение F > F табл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна
)
.

15.4 Эксцесс

Коэффиент эксцесса (excess kurtosis) показывает отсроту пика распределения. Как мы говорили , коэффициент эксцесса связан с четвертым центральным моментом распределения, поэтому выборочный коэффициент эксцесса также рассчитывается на его основе.

\

Что в формуле коэффициента эксцесса делает \(-3\)?

Коэффициент эксцесса, как и коэффициент асимметрии, может принимать положительные, отрицательные или нулевые значения.

  • нулевой коэффициент эксцесса обозначает такой же эксцесс, как у стандартного нормального распределения (то есть, «нормальный»)
  • положительный коэффициент эксцесса обозначает, что распределение имеет более острую вершину (то есть у нас очень много средних значений, но тонкие «хвосты» — мало низких и высоких значений)
  • отрицательный коэффициент эксцесса обозначает, что распределение имеет более пологую вершину (то есть у нас меньше средних значений и толстые «хвосты» — много низких и высоких значений)
Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: