Автоматизированный априорный анализ статистической совокупности в среде ms excel

Значимость коэффициентов регрессии в excel. регрессионный анализ в excel

Проверка гипотезы

Чтобы понять p-значения, нам сначала нужно понять концепцию проверки гипотез .

Проверка гипотезы — это формальный статистический тест, который мы используем, чтобы отвергнуть или не отвергнуть какую-либо гипотезу. Например, мы можем предположить, что новое лекарство, метод или процедура дает некоторые преимущества по сравнению с текущим лекарством, методом или процедурой.

Чтобы проверить это, мы можем провести проверку гипотезы, в которой мы используем нулевую и альтернативную гипотезы:

Нулевая гипотеза.Между новым и старым методом нет никакого эффекта или разницы.

Альтернативная гипотеза.Между новым и старым методом существует некоторый эффект или разница.

Значение p показывает, насколько правдоподобна нулевая гипотеза с учетом данных выборки. В частности, если предположить, что нулевая гипотеза верна, p-значение говорит нам о вероятности получения эффекта, по крайней мере, такого же большого, как тот, который мы фактически наблюдали в выборке данных.

Если p-значение проверки гипотезы достаточно низкое, мы можем отклонить нулевую гипотезу. В частности, когда мы проводим проверку гипотезы, мы должны с самого начала выбрать уровень значимости. Обычный выбор уровней значимости: 0,01, 0,05 и 0,10.

Если p-значения меньше нашего уровня значимости, мы можем отклонить нулевую гипотезу.

В противном случае, если p-значение равно или превышает наш уровень значимости, мы не можем отвергнуть нулевую гипотезу.

Как посчитать доверительный интервал по функции ДОВЕРИТ в Excel

Функция имеет следующую синтаксическую запись:

  • альфа – обязательный, принимает числовое значение, характеризующее уровень значимости – вероятность отклонения нулевой (неверной) гипотезы в том случае, когда она на самом деле верна. Определяется как 1-, где  – уровень доверия (вероятность нахождения истинного значения некоторой оцениваемой величины в определенном интервале, называемом доверительным).
  • стандартное_откл – обязательный, принимает значение стандартного отклонения величины для генеральной совокупности значений (в Excel предусмотрена функция для определения этой величины – СТАНДОТКЛОН.Г).
  • размер – обязательный, принимает числовое значение, характеризующее количество точек данных в анализируемой выборке (ее размер).
  1. Все аргументы функции должны указываться в виде числовых значений или данных, которые могут быть преобразованы в числа (например, текстовые строки с числами, логические ИСТИНА, ЛОЖЬ). В противном случае результатом выполнения функции ДОВЕРИТ будет код ошибки #ЧИСЛО!
  2. Аргумент альфа должен быть указан числовым значением из диапазона от 0 до 1 (оба включительно). Иначе функция ДОВЕРИТ вернет код ошибки #ЧИСЛО! Аналогичная ошибка возникает в случаях, когда аргумент стандартное_откл задан числом, взятым из диапазона отрицательных значений или нулем.
  3. Диапазон допустимых значений для аргумента размер – от 1 до бесконечности со знаком плюс.

История вопроса

Понятие уровня значимости было введено британским статистиком и генетиком Рональдом Фишером в 1925 году, когда он разрабатывал методику проверки статистических гипотез. При анализе какого-либо процесса существует определенная вероятность тех либо иных явлений. Трудности возникают при работе с небольшими (либо не очевидными) процентами вероятностей, подпадающими под понятие «погрешность измерений».

При работе со статистическими данными, недостаточно конкретными, чтобы их проверить, ученые сталкивались с проблемой нулевой гипотезы, которая «мешает» оперировать малыми величинами. Фишер предложил для таких систем определить вероятность событий в 5 % (0,05) в качестве удобного выборочного среза, позволяющего отклонить нуль-гипотезу при расчетах.

Форматы функции CONFIDENCE

Функция CONFIDENCE или ДОВЕРИТ, определяется пределами доверия — это нижняя и верхняя границы ДИ и являются 95% показателями. Например, при изучении предпочтении, было обнаружено, что 70% людей предпочитают Боржоми , по сравнению с Пепси при ДИ в 3% и уровнем доверия 95%, тогда существует 95-процентная вероятность того, что истинная пропорция составляет от 67 до 73%.

Функции “ДОВЕРИТ” отображаются под различными синтаксисами в разных версиях Excel. Например, Excel 2010 имеет две функции: “ДОВЕРИТ.НОРМ” и “ДОВЕРИТ.T”, которые помогают вычислять ширину “ДИ. ДОВЕРИТ.НОРМ” используется, когда известно стандартное отклонение измерения. В противном случае применяется “ДОВЕРИТ.T”, оценка осуществляется по данным выборки. Доверительные интервалы в excel до 2010 года имели только функцию “ДОВЕРИТ”. Его аргументы и результаты были аналогичными аргументам функции “ДОВЕРИТ.НОРМ”.

Первый по-прежнему доступен в более поздних версиях Excel для обеспечения совместимости. #NUM! Error — происходит, если альфа меньше или равна 0, или больше или равна 0. Данное стандартное отклонение меньше или равно 0. Указанный размер аргумента меньше единицы. #СТОИМОСТЬ! Error — происходит, если любой из предоставленных аргументов не является числовым.

Форматы функции CONF > Вам будет интересно: Как убрать Sindex.biz со стартовой страницы браузера: основные действия

Функция CONFIDENCE или ДОВЕРИТ, определяется пределами доверия — это нижняя и верхняя границы ДИ и являются 95% показателями. Например, при изучении предпочтении, было обнаружено, что 70% людей предпочитают Боржоми , по сравнению с Пепси при ДИ в 3% и уровнем доверия 95%, тогда существует 95-процентная вероятность того, что истинная пропорция составляет от 67 до 73%.

Функции “ДОВЕРИТ” отображаются под различными синтаксисами в разных версиях Excel. Например, Excel 2010 имеет две функции: “ДОВЕРИТ.НОРМ” и “ДОВЕРИТ.T”, которые помогают вычислять ширину “ДИ. ДОВЕРИТ.НОРМ” используется, когда известно стандартное отклонение измерения. В противном случае применяется “ДОВЕРИТ.T”, оценка осуществляется по данным выборки. Доверительные интервалы в excel до 2010 года имели только функцию “ДОВЕРИТ”. Его аргументы и результаты были аналогичными аргументам функции “ДОВЕРИТ.НОРМ”.

Первый по-прежнему доступен в более поздних версиях Excel для обеспечения совместимости. #NUM! Error — происходит, если альфа меньше или равна 0, или больше или равна 0. Данное стандартное отклонение меньше или равно 0. Указанный размер аргумента меньше единицы. #СТОИМОСТЬ! Error — происходит, если любой из предоставленных аргументов не является числовым.

3.Корреляционно-регрессионный анализ в Excel

На основе данных таблицы построим уравнение регрессии: ух=2,836-0,067х. Коэффициент регрессии а1=-0,067 означает, что с повышением урожайности зерновых на 1 ц/га затраты труда на 1 ц зерна уменьшаются на 0,067 чел.-ч.

Коэффициент корреляции r=0,85>0,7, следовательно, связь между изучаемыми признаками в данной совокупности тесная. Коэффициент детерминации r 2 =0,73 показывает, что 73% вариации результативного признака (затрат труда на 1 ц зерна) вызвано действием факторного признака (урожайности зерновых).

В таблице критических точек распределения Фишера — Снедекора найдём критическое значение F-критерия при уровне значимости 0,05 и числе степеней свободы к1=m-1=2-1=1 и k2=n-m=30-2=28, оно равно 4,21. Так как рассчитанное значение критерия больше табличного (F=74.9896>4,21), то уравнение регрессии признаётся значимым.

Для оценки значимости коэффициента корреляции рассчитаем t-критерий Стьюдента:

Втаблице критических точек распределения Стьюдента найдём критическое значениеt-критерия при уровне значимости 0,05 и числе степеней свободы n-1=30-1=29, оно равно 2,0452. Так как расчётное значение больше табличного, то коэффициент корреляции является значимым.

Дисперсионный анализ: соединение теории и практики
Или, что то же самое, с вероятностью 95% принимаем основную гипотезу о том, что средняя себестоимость выпуска единицы одной и той же продукции в малых, средних и крупных подразделениях предприятия существенно не различается.

Расчет дисперсии и стандартной ошибки средней арифметической

Чтобы получить дисперсию средней арифметической нет необходимости проводить множество экспериментов, достаточно иметь только одну выборку. Это легко доказать. Для начала вспомним, что средняя арифметическая (простая) рассчитывается по формуле:

где xi – значения переменной, n – количество значений.

Используя более привычные обозначения, формулу записывают как:

где σ 2 – это дисперсия, случайной величины, причем генеральная.

На практике же, генеральная дисперсия известна далеко не всегда, точнее совсем редко, поэтому в качестве оной используют выборочную дисперсию:

Стандартное отклонение средней арифметической называется стандартной ошибкой средней и рассчитывается, как квадратный корень из дисперсии.

Формула стандартной ошибки средней при использовании генеральной дисперсии

Формула стандартной ошибки средней при использовании выборочной дисперсии

Последняя формула на практике используется чаще всего, т.к. генеральная дисперсия обычно не известна. Чтобы не вводить новые обозначения, стандартную ошибку средней обычно записывают в виде соотношения стандартного отклонения выборки и корня объема выборки.

Функция интерполяции доверия

“ДОВЕРИТ.” классифицируется по функциям статистики и будет высчитывать и возвращать ДИ для среднего значения. Доверительные интервалы в excel могут быть чрезвычайно полезными для финансового анализа. Как аналитик, “ДОВЕРИТ.” помогает в прогнозировании и корректировке для широкого круга целей, путем оптимизации принятия финансовых решений. Это выполняется с применением графического отображения данных в наборе переменных.

Аналитики могут принимать более эффективные решения на основе статистической информации, предоставляемой нормальным распределением. Например, они могут найти связь между полученным доходом и расходами, затрачиваемыми на предметы роскоши. Чтобы вычислить ДИ для среднего значения совокупности, возвращаемое доверительное значение, должно быть добавлено и вычтено из среднего значения выборки. Например, для среднего значения выборки x: Доверительный интервал = x ± ДОВЕРИТ.

Пример расчета доверительного интервала в excel – предположим, что нам даны следующие данные:

  1. Уровень значимости: 0,05.
  2. Стандартное отклонение населения: 2,5.
  3. Размер выборки: 100.

Функция доверительного интервала Excel используется для расчета ДИ со значением 0,05 (т. е. уровень достоверности 95%) для среднего времени выборки для изучения времени коммутации в офисе на 100 человек. Среднее значение образца составляет 30 минут, а стандартное отклонение составляет 2,5 минуты. Доверительный интервал составляет 30 ± 0,48999, что соответствует диапазону 29,510009 и 30,48999 (минут).

Построение среднего значения совокупности

Чтобы построить доверительный интервал для среднего значения совокупности, предоставленной вероятности и размера выборки, нужно применить функцию “ДОВЕРИТ” в Excel, которая использует нормальное распределение для вычисления значения доверия. Предположим, исследователи случайно выбрали 100 человек, измерили их вес и установили средний в 76 кг. Если нужно узнать средний показатель для людей в конкретном городе, маловероятно, что он для более крупной группы будет иметь такое же среднее значение, как и выборка, состоящая всего из 100 человек.

Гораздо более вероятно, что выборочное среднее в 76 кг может быть приблизительно равно (неизвестному) популяционному среднему, и нужно знать, насколько точным является оценочный ответ. Эта неопределенность, связанная с оценкой интервалов, называется уровнем достоверности, обычно 95%. Функция “ДОВЕРИТ” (альфа, сигма, n) возвращает значение, используемое для построения ДИ среднего числа совокупности. Предполагается, что данные выборок соответствуют стандартным нормальным распределениям с известной сигмой стандартного отклонения, а размер выборки равен n. Перед тем как рассчитать доверительный интервал в excel 95% уровня, принимают альфу как 1 – 0,95 = 0,05.

Уровень надежности

Уровень доверия (этот термин более распространен в отечественной литературе, чем Уровень надежности ) — означает вероятность того, что доверительный интервал содержит истинное значение оцениваемого параметра распределения.

Уровень доверия равен 1-α, где α – уровень значимости .

Термин Уровень надежности имеет синонимы: уровень доверия, коэффициент доверия, доверительный уровень и доверительная вероятность (англ. Confidence Level , Confidence Coefficient ).

В математической статистике обычно используют значения уровня доверия 90%; 95%; 99%, реже 99,9% и т.д.

Например, Уровень доверия 95% означает, что событие, вероятность которого 1-0,95=5% исследователь считать маловероятным или невозможным. Разумеется, выбор уровня доверия полностью зависит от исследователя. Так, степень доверия авиапассажира к надежности самолета, несомненно, должна быть выше степени доверия покупателя к надежности электрической лампочки.

Примечание : Стоит отметить, что математически не корректно говорить, что Уровень доверия является вероятностью, того что оцениваемый параметр распределения принадлежит доверительному интервалу , вычисленному на основе выборки . Поскольку, считается, что в математической статистике отсутствуют априорные сведения о параметре распределения. Математически правильно говорить, что доверительный интервал , с вероятностью равной Уровню доверия, накроет истинное значение оцениваемого параметра распределения.

Расчет доверительного интервала для математического ожидания с помощью t-распределения Стьюдента в Excel

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов. Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α, стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия2. Более современным, рассчитав p-value, добавив степень уверенности при отклонении гипотезы.3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия)

Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю видеоролик о том, как рассчитать критерий Стьюдента и проверить гипотезу о генеральной средней в Excel.

Иногда просят объяснить, как делаются такие наглядные диаграммы с распределением. Ниже можно скачать файл, где проводились расчеты для этой статьи.

Всего доброго, будьте здоровы.

Статистика и уровни доверия

Доверительный интервал не является числом, в котором истинное значение параметра найдено с точностью. Действительно, случайная величина теоретически может принимать все возможные значения в рамках законов физики. Доверительный интервал — это фактически область, в которой истинное (неизвестное) значение параметра, изучаемого в популяции, наиболее вероятно с вероятностью, которую выбирают. При его использовании интервал основан на вычислении доверительного порога, погрешности и коэффициента запаса.

Перед тем как определить доверительный интервал в excel, определяют эти элементы, которые зависят от параметров:

  1. Изменчивости измеряемых характеристик.
  2. Размера выборки: чем она больше, тем более высокая точность.
  3. Метода отбора проб.
  4. Уровень доверия – s.

Уровень доверия представляет собой гарантированную уверенность. Например, с уровнем достоверности 90%, это означает, что 10% риск будет неправильным. Как правило, хорошей практикой является выбор достоверности в 95%. Таким образом, максимальный доверительный уровень является большим, чем больше размер выборки. Маржинальный коэффициент является индикатором, выведенным непосредственно из доверительного порога. В таблице приведены некоторые примеры для наиболее распространенных значений.

ЕСЛИ

Функция ЕСЛИ является очень популярной в Excel. Она позволяет автоматически выполнять какое-либо действие, в зависимости от поставленного условия.

Функция ЕСЛИ выполняет проверку логического выражения и если выражение истинно, то поставляется одно значение и альтернативное, если ложь. Синтаксис следующий:

— Логическое выражение — выражение, которое по итогу своего вычисления должно вырнуться значение ИСТИНА или ЛОЖЬ.— Значение, если истина — устанавливаем указанное значение, если логическое выражение вернуло ИСТИНА— Значение, если ложь — устанавливает указанное значение, если логическое выражение вернуло ЛОЖЬ.

В примере выше мы хотим определить, получили ли мы за месяц выручку больше 500 рублей или нет. В формуле ЕСЛИ(B2>500;»Да»;»Нет») первый параметр (B2>500) проверяет, выручка за месяц больше 500 рублей или нет; второй параметр («Да») — функция вернет Да, если выручка больше 500 рублей и соответственно Нет (третий параметр), если выручка меньше.

Обратите внимание, что значения при истине или лжи могут быть не только текстовые, числовые, но также и функции(в том числе и ЕСЛИ), что позволяет реализовать достаточно сложные логические конструкции

Проверка статистических гипотез в EXCEL о равенстве среднего значения распределения (дисперсия известна)

history 27 ноября 2016 г.

Рассмотрим использование MS EXCEL при проверке статистических гипотез о среднем значении распределения в случае известной дисперсии. Вычислим тестовую статистику Z , рассмотрим процедуру «одновыборочный z-тест», вычислим Р-значение (Р- value ).

Проверка гипотез (Hypothesis testing) тесно связана с построением доверительных интервалов . При первом знакомстве с процедурой проверки гипотез рекомендуется начать с изучения построения соответствующего доверительного интервала .

СОВЕТ : Для проверки гипотез нам потребуется знание следующих понятий:

Формулировка задачи. Из генеральной совокупности имеющей нормальное распределение с неизвестным μ и известной дисперсией σ 2 взята выборка размера n. Необходимо проверить статистическую гипотезу о равенстве неизвестного μ заданному значению μ (англ. Inference on the mean of a population, variance known).

Примечание : Требование о нормальности исходного распределения, из которого берется выборка , не является строгим. Н , необходимо, чтобы были выполнены условия применения Центральной предельной теоремы .

Статистическая гипотеза – это некое утверждение о неизвестных параметрах распределения. Процедура проверки гипотез зависит от оцениваемого параметра распределения и условий задачи. Сначала рассмотрим общий подход при проверке гипотез , затем рассмотрим конкретный пример.

Обычно формулируют 2 гипотезы: нулевую Н и альтернативную Н 1 . В нашем случае нулевой гипотезой будет равенство μ и μ , а альтернативной гипотезой – их отличие. Нулевая гипотеза отвергается только в том случае, если на это достаточно оснований. В этом случае принимается альтернативная гипотеза .

Чтобы понять, достаточно ли у нас оснований для отклонения нулевой гипотезы , из распределения делают выборка.

Сначала проведем проверку гипотезы , используя доверительный интервал , а затем с помощью вышеуказанной процедуры z-тест . В конце вычислим Р-значение и также используем его для проверки гипотезы .

Итак, нулевая гипотеза Н утверждает, что неизвестное среднее значение распределения μ равно μ . Соответствующая альтернативная гипотеза Н 1 утверждает обратное: μ не равно μ . Это пример двусторонней проверки , т.к. неизвестное значение может быть как больше, так и меньше μ .

Если упрощенно, то проверка гипотезы заключается в сравнении 2-х величин: вычисленного на основании выборки среднего значения Х ср и заданного μ . Если эти значения «отличаются больше, чем можно было бы ожидать исходя из случайности», то нулевую гипотезу отклоняют.

Поясним фразу «отличаются больше, чем можно было бы ожидать исходя из случайности». Для этого, вспомним, что распределение Выборочного среднего (статистика Х ср ) стремится к нормальному распределению со средним значением μ и стандартным отклонением равным σ/√n, где σ – стандартное отклонение распределения , из которого берется выборка (не обязательно нормальное ), а n – объем выборки (подробнее см. статью про ЦПТ ). В нашем случае стандартное отклонение σ известно.

В задачах проверки гипотез также задается уровень доверия (вероятность), который определяет порог между утверждением «мало вероятно» и «вполне вероятно» или «может быть обусловлено случайностью» и «не может быть обусловлено случайностью». Обычно используют значения уровня доверия 90%; 95%; 99%, реже 99,9% и т.д.

Примечание : Уровень доверия равен (1-α) , где α – уровень значимости . И наоборот, α=( 1-уровень доверия ) .

Таким образом, знание распределения статистики Х ср и заданного уровня доверия , позволяют нам формализовать с помощью математических выражений фразу «отличаются больше, чем можно было бы ожидать исходя из случайности». В этом нам поможет доверительный интервал (как строится доверительный интервал нам известно из этой статьи ).

Если среднее выборки попадает в доверительный интервал, построенный относительно μ , то для отклонения нулевой гипотезы оснований нет.

Для визуализации процедуры проверки гипотез в файле примера на листе Сигма известна создана диаграмма .

Если μ не попадает в доверительный интервал, то нулевая гипотеза отклоняется.

Теперь рассмотрим проверку гипотез с помощью процедуры z -тест .

Функция доверительного интервала

В любом опросе и исследовании доверительные интервалы — отличный способ понять роль ошибок выборки в средних процентных показателях. Для любого опроса, поскольку исследователи всегда лишь изучают долю из более крупного расчета, в их оценках есть неопределенность, из-за чего будут ошибки выборки.

Доверительный интервал (ДИ) дает понимание о том, насколько средняя величина может колебаться. Он представляет собой диапазон значений, которые одинаково центрированы от известного среднего числа выборки. Чем выше уровень доверия (в процентах), тем меньше интервал, более точными будут результаты. Исследование образцов с большей изменчивостью или большим стандартным отклонением порождает более широкие доверительные интервалы в excel.

Существует соотношение обратного квадратного корня между ДИ и размерами выборки. Меньшие размеры генерируют более широкие ДИ, поэтому для получения более точных оценок или сокращения пороговой погрешности наполовину, необходимо примерно в четыре раза увеличить размер выборки.

Интервалы и нормальное распределение

Наиболее знакомое использование доверительного интервала, означает «погрешность ошибок». В опросах погрешность составляет плюс или минус 3%. ДИ полезны в контекстах, которые выходят за рамки этой простой ситуации. Они могут использоваться с ненормальными распределениями, которые сильно искажены. Для вычисления прогноза доверительного интервала в excel требуются следующие строительные блоки:

  1. Среднее значение.
  2. Стандартное отклонение наблюдений.
  3. Число опросов в выборке.
  4. Уровень доверия, который нужно применить к ДИ.

Перед тем как построить доверительный интервал в excel, изучают его вокруг среднего значения выборки, начинают с принятия решения о том, какой будет принят процент других средств выборки, если они были собраны и рассчитаны в этом интервале. Если это так , то 95% возможных образцов будут захвачены ДИ с 1,96 стандартных отклонений выше и ниже образца.

3.6. Вычисление точечных оценок в Excel

Вычисление исправленной дисперсии.исправленной дисперсией.функциюДИСПарг1; арг2; …; арг30арг1; арг2; …; арг30Пример 3.6.Решение.Вычисление оценок максимального правдоподобия.Поиск решенияСервисПоиск решенияПример 3.7.РешениеПоиск решения СервисПоиск решения

  • в поле ввода Установить целевую ячейку: ввести адрес ячейки, в которой вычисляется значение минимизируемого функционала (в нашем примере С5);
  • включить опцию Равной: максимальному значению (ищутся значения, при которых функционал достигает максимального значения);
  • в поле Изменяя ячейки: ввести адреса ячеек, в которых находятся значения искомых оценок (в нашем примере это ячейки С8:D8);
  • щелкнув мышью на кнопке Добавить,сформировать ограничения на значения искомых оценок (в нашем примере это требование , чтобы не был равен –).

Поиск решения ВыполнитьРезультаты поиска решенияСохранить найденное решениеПоиск решенияаЗадание 3.1.Поиск решения.РекомендацияПоиск решенияФункции Excel для вычисления других точечных оценок.Функция СТАНДОТКЛОНарг1; арг2; …; арг30арг1; арг2; …; арг30 Функция СТАНДОТКЛОНП арг1; арг2; …; арг30арг1; арг2; …; арг30Функция ЭКСЦЕССэксцесс арг1; арг2; …; арг30арг1; арг2; …; арг30Функция МОДАарг1; арг2; …; арг30арг1; арг2; …; арг30нет повторяющихся значенийФункция МЕДИАНАарг1; арг2; …; арг30арг1; арг2; …; арг30Функция СКОСарг1; арг2; …; арг30арг1; арг2; …; арг30Вычисление описательных статистик.

  • характеристики положения описывают положение данных на числовой оси (среднее, минимальное и максимальное значения, медиана и др.);
  • характеристики разброса описывают степень разброса данных относительно своего центра (дисперсия, размах выборки, эксцесс, среднеквадратическое отклонение и др.);
  • характеристики асимметрии определяют симметрию распределения данных относительно своего центра (коэффициент асимметрии, положение медианы относительно среднего и др.);
  • характеристики, описывающие закон распределения (частоты, относительные частоты, гистограммы и др.).

Описательная статистикаПакет анализаОписательная статистикаСервисПакет анализаОписательная статистикаВходной интервал:Группирование:Метки в первой строкеОписательная статистикаВыходной интервал: / Новый рабочий лист: / Новая рабочая книгаВыходной интервал:Итоговая статистика:Уровень надежности:К-й наименьший:К-й наибольший:Описательная статистика

  • Интервал – определяет размах выборки ;
  • Сумма – определяет сумму всех элементов выборки;
  • Счет– определяет число обработанных элементов выборки;
  • Уровень надежности – определяет величину , от которой зависит доверительный интервал для математического ожидания, имеющий вид

Пример 3.8.Описательная статистика.РешениеСервисПакет анализаОписательная статистикаОписательная статистикаЗадание 3.2.
  …           11         …  

3.6. Вычисление точечных оценок в Excel

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: