Прогнозирование спроса

Финансовое прогнозирование. методы. расчет. пример

Прогнозирование в Excel сроков изготовления заказов.

Переходим непосредственно к рассмотрению примера.

Небольшой участок завода производит строительные металлоконструкции. Входным сырьем является листовой и профильный металлопрокат. Мощность участка в рассматриваемом периоде времени неизменна. В наличии есть статистические данные о сроках изготовления 13-и заказов (k=13) и количестве использованного металлопроката. Попробуем найти зависимость срока изготовления заказа от суммарной длины и массы профильного проката и суммарной площади и массы листового проката.

В рассмотренном примере срок изготовления заказа напрямую зависит от мощности производства  (люди, оборудование) и трудоемкости выполнения технологических операций. Но детальные технологические расчеты очень трудоемки и, соответственно, длительны и дороги. Поэтому в качестве аргументов функции выбраны четыре параметра, которые легко и быстро можно посчитать при наличии спецификации металлопроката, и которые косвенно влияют на результат – срок изготовления. В результате анализа была установлена сильнейшая связь между изменениями исходных данных и результатами процесса изготовления металлоконструкций.

Примечательно, что найденная зависимость связывает в одной формуле параметры с различными единицами измерения. Это нормально. Найденные коэффициенты не являются безразмерными. Например, размерность коэффициента b – рабочие дни, а коэффициента m1– рабочие дни/м.

1. Запускаем MS Excel и заполняем ячейки B4…F16 таблицы Excel исходными статистическими данными. В столбцы пишем значения переменных xi и фактические значения функции y, располагая данные, относящиеся к одному заказу в одной строке.

2. Так как функции ЛИНЕЙН и ЛГРФПРИБЛ — функции выводящие результаты в виде массива, то их ввод имеет некоторые особенности. Выделяем область размером 5×5 ячеек — ячейки I9…M13. Количество выделенных строк всегда — 5, а количество столбцов должно быть равно количеству переменных xплюс 1. В нашем случае это: 4+1=5.

3. Нажимаем на клавиатуре клавишу F2 и набираем формулу

в ячейках I9…M13: =ЛИНЕЙН(F4:F16;B4:E16;ИСТИНА;ИСТИНА)

4. После набора формулы необходимо для ее ввода нажать сочетание клавиш Ctrl+Shift+Enter. (Знак «+» нажимать не нужно, в записи он означает, что клавиши нажимаются последовательно при удержании нажатыми всех предыдущих.)

5. Считываем результаты работы функции ЛИНЕЙН в ячейках I9…M13.

Карту, поясняющую значения каких параметров в каких ячейках выводятся, я расположил в ячейках I4…M8 для удобства чтения сверху над массивом значений.

Общий вид уравнения аппроксимирующей функции y, представлен в объединенных ячейках I2…M2.

Значения коэффициентов b, m1, m2, m3, m4 считываем соответственно

в ячейке M9: b=4,38464164

в ячейке L9: m1=0,002493053

в ячейке K9: m2=0,000101103

в ячейке J9: m3=-0,084844006

в ячейке I9: m4=0,002428953

6. Для определения расчетных значений функции y — срока изготовления заказа — вводим формулу

в ячейку G4: =$L$9*B4+$K$9*C4+$J$9*D4+$I$9*E4+$M$9 =5,0

y=b+m1*x1+m2*x2+m3*x3+m4*x4

7. Копируем эту формулу во все ячейки столбца от G5 до G17 «протягиванием» и сверяем расчетные значения с фактическими. Совпадение очень хорошее!

8. Предварительные действия все выполнены. Уравнение аппроксимирующей функции y найдено. Пробуем выполнить прогнозирование в Excel срока изготовления нового заказа. Вписываем исходные данные.

8.1. Длину прокатных профилей по проекту x1 в метрах пишем

в ячейку B17: 2820

8.2. Массу прокатных профилей x2 в килограммах пишем

в ячейку C17: 62000

8.3. Площадь листового проката, используемого в новом заказе по проекту, x3 в метрах квадратных заносим

в ячейку D17: 110,0

8.4. Общую массу листового проката x4 в  килограммах вписываем

в ячейку E17: 7000

9. Расчетный срок изготовления заказа y в рабочих днях считываем

в ячейке G17: =$L$9*B17+$K$9*C17+$J$9*D17+$I$9*E17+$M$9 =25,4

Прогнозирование в Excel выполнено. На основе статистических данных мы рассчитали предположительный срок выполнения нового заказа — 25,4 рабочих дней. Остается выполнить заказ и сверить фактическое время с прогнозным.

Прогнозирование будущих значений в Excel по условию

Пример 3. В таблице Excel указаны значения независящей и зависимой переменных. Некие значения зависимой переменной указаны в виде отрицательных чисел. Спрогнозировать несколько следующих значений зависимой переменной, исключив из расчетов отрицательные числа.

Вид таблицы данных:

Для расчета будущих значений Y без учета отрицательных значений (-5, -20 и -35) используем формулу:

C помощью функций ЕСЛИ производится перебор частей спектра B2:B11 и отброс отрицательных чисел. Так, получаем прогнозные данные на основании значений в строчках с номерами 2,3,5,6,8-10. Для детализированного анализа формулы изберите инструмент «ФОРМУЛЫ»-«Зависимости формул»-«Вычислить формулу». Один из шагов вычислений формулы:

Особенности использования функции ПРЕДСКАЗ в Excel

Функция имеет следующую синтаксическую запись:

=ПРЕДСКАЗ(x;известные_значения_y;известные_значения_x)

Описание аргументов:

  • x – обязательный для заполнения аргумент, характеризующий одно или несколько новых значений независимой переменной, для которых требуется предсказать значения y (зависимой переменной). Может принимать числовое значение, массив чисел, ссылку на одну ячейку или диапазон;
  • известные_значения_y – обязательный аргумент, характеризующий уже известные числовые значения зависимой переменной y. Может быть указан в виде массива чисел или ссылки на диапазон ячеек с числами;
  • известные_значения_x – обязательный аргумент, который характеризует уже известные значения независимой переменной x, для которой определены значения зависимой переменной y.

Примечания:

  1. Второй и третий аргументы рассматриваемой функции должны принимать ссылки на непустые диапазоны ячеек или такие диапазоны, в которых число ячеек совпадает. Иначе функция ПРЕДСКАЗ вернет код ошибки #Н/Д.
  2. Если одна или несколько ячеек из диапазона, ссылка на который передана в качестве аргумента x, содержит нечисловые данные или текстовую строку, которая не может быть преобразована в число, результатом выполнения функции ПРЕДСКАЗ для данных значений x будет код ошибки #ЗНАЧ!.
  3. Статистическая дисперсия величин (можно рассчитать с помощью формул ДИСП.Г, ДИСП.В и др.), передаваемых в качестве аргумента известные_значения_x, не должна равняться 0 (нулю), иначе функция ПРЕДСКАЗ вернет код ошибки #ДЕЛ/0!.
  4. Рассматриваемая функция игнорирует ячейки с нечисловыми данными, содержащиеся в диапазонах, которые переданы в качестве второго и третьего аргументов.
  5. Функция ПРЕДСКАЗ была заменена функцией ПРЕДСКАЗ.ЛИНЕЙН в Excel версии 2016, но была оставлена для обеспечения совместимости с Excel 2013 и более старыми версиями.
  6. Для предсказания только одного будущего значения на основании известного значения независимой переменной функция ПРЕДСКАЗ используется как обычная формула. Если требуется предсказать сразу несколько значений, в качестве первого аргумента следует передать массив или ссылку на диапазон ячеек со значениями независимой переменной, а функцию ПРЕДСКАЗ использовать в качестве формулы массива.

Как собрать информацию?

Спрогнозировать спрос невозможно без изучения статистики по продажам. Данные должны быть достаточны для того, чтобы сделать определенные выводы. Чем больше элементов и чем они однороднее, тем лучше. Хотя конкретных требований к статистике нет. Потому что для каждого рынка показатели свои:

• B2C – хватит и месячных показателей, потому что продажи за этот период очень высоки и достигают нескольких тысяч;

• B2B – прогноз будет реалистичным только при количестве сделок от 100.

Крупные сделки (10% от выручки за месяц) учитывать не стоит – они выбиваются из совокупного объема. Их включение в статистику делает её неточной

Чтобы показания были максимально достоверными, нужно принимать во внимание некоторые факторы:

• Долю рекламы в маркетинге;

• Проведение мероприятий в рамках сбытовой компании;

• Внедрение на рынок новых товаров;

• Работу по новым направлениям продаж;

• Количество клиентов с разовыми, но большими в объемах покупками.

Как спрогнозировать спрос?

Для построения прогноза в будущем используют 3 группы методов:

• Эвристические – наиболее субъективные. Делятся на социологические и экспертные. В первом случае в качестве основы выступают опросы потребителей, во втором случае – опросы отраслевых специалистов. Их мнение принято называть экспертной оценкой. Чтобы провести подобные исследования, часто использую метод Дельфи, мозгового штурма;

• Экономико-математические – самые объективные. Прогнозы составляются на основе моделей, формул и графиков. Наиболее яркие примеры экономико-математических методов: экстраполяция (в расчет берется опыт прошлого, который транслируется на будущее), моделирование (позволяет увидеть, от чего и в какой степени зависят отдельные параметры);

• Специальные. Представляют собой использование трендовых моделей. Чаще всего это делается в виде математической формулы или графика. В результате чего компания получает данные на конкретный период времени по определенным показателям.

Прогнозы бывают:

• Оптимистичными. Они содержат информацию о том, что за конкретный период времени большинство показателей улучшится;

• Пессимистичными. В этом случае значение имеют минимальные цифры, отражающие объем продаж, выручку предприятия.

И те, и другие прогнозы важны для компании вне зависимости от её финансового положения. Дело в том, что, имея данные о самом лучшем и худшем развитии событий, фирма без труда определит пути отхода, создаст финансовую подстраховку и подготовится к возможным негативным последствиям. В то же время благоприятные прогнозы позволяют определить, в какой период возможно освоение новых направлений продаж, расширение ассортимента, изменение ценовой политики, корректировка маркетинговой стратегии.

Анализ прогноза спроса продукции в Excel по функции ПРЕДСКАЗ

Пример 2. Компания недавно представила новый продукт. С момента вывода на рынок ежедневно ведется учет количества клиентов, купивших этот продукт. Предположить, каким будет спрос на протяжении 5 последующих дней.

Вид исходной таблицы данных:

Пример 2.» src=»https://exceltable.com/funkcii-excel/images/funkcii-excel145-6.png» >

Как видно, в первые дни спрос был небольшим, затем он рос достаточно большими темпами, а на протяжении последних трех дней изменялся незначительно. Это свидетельствует о том, что основным фактором роста продаж на данный момент является не расширение базы клиентов, а развитие продаж с постоянными клиентами. В таких случаях рекомендуют использовать не линейную регрессию, а логарифмический тренд, чтобы результаты прогнозов были более точными.

Рассчитаем значения логарифмического тренда с помощью функции ПРЕДСКАЗ следующим способом:

Как видно, в качестве первого аргумента представлен массив натуральных логарифмов последующих номеров дней. Таким образом получаем функцию логарифмического тренда, которая записывается как y=aln(x)+b.

Для сравнения, произведем расчет с использованием функции линейного тренда:

И для визуального сравнительного анализа построим простой график.

Как видно, функцию линейной регрессии следует использовать в тех случаях, когда наблюдается постоянный рост какой-либо величины. В данном случае функция логарифмического тренда позволяет получить более правдоподобные данные (более наглядно при большем количестве данных).

Уравнение линии тренда в Excel

В предложенном выше примере была выбрана линейная аппроксимация только для иллюстрации алгоритма. Как показала величина достоверности, выбор был не совсем удачным.

Следует выбирать тот тип отображения, который наиболее точно проиллюстрирует тенденцию изменений вводимых пользователем данных. Разберемся с вариантами.

Линейная аппроксимация

Ее геометрическое изображение – прямая. Следовательно, линейная аппроксимация применяется для иллюстрации показателя, который растет или уменьшается с постоянной скоростью.

Рассмотрим условное количество заключенных менеджером контрактов на протяжении 10 месяцев:

На основании данных в таблице Excel построим точечную диаграмму (она поможет проиллюстрировать линейный тип):

Выделяем диаграмму – «добавить линию тренда». В параметрах выбираем линейный тип. Добавляем величину достоверности аппроксимации и уравнение линии тренда в Excel (достаточно просто поставить галочки внизу окна «Параметры»).

Обратите внимание! При линейном типе аппроксимации точки данных расположены максимально близко к прямой. Данный вид использует следующее уравнение:. y = 4,503x + 6,1333

y = 4,503x + 6,1333

  • где 4,503 – показатель наклона;
  • 6,1333 – смещения;
  • y – последовательность значений,
  • х – номер периода.

Прямая линия на графике отображает стабильный рост качества работы менеджера. Величина достоверности аппроксимации равняется 0,9929, что указывает на хорошее совпадение расчетной прямой с исходными данными. Прогнозы должны получиться точными.

Чтобы спрогнозировать количество заключенных контрактов, например, в 11 периоде, нужно подставить в уравнение число 11 вместо х. В ходе расчетов узнаем, что в 11 периоде этот менеджер заключит 55-56 контрактов.

Экспоненциальная линия тренда

Данный тип будет полезен, если вводимые значения меняются с непрерывно возрастающей скоростью. Экспоненциальная аппроксимация не применяется при наличии нулевых или отрицательных характеристик.

Построим экспоненциальную линию тренда в Excel. Возьмем для примера условные значения полезного отпуска электроэнергии в регионе Х:

Строим график. Добавляем экспоненциальную линию.

Уравнение имеет следующий вид:

  • где 7,6403 и -0,084 – константы;
  • е – основание натурального логарифма.

Показатель величины достоверности аппроксимации составил 0,938 – кривая соответствует данным, ошибка минимальна, прогнозы будут точными.

Логарифмическая линия тренда в Excel

Используется при следующих изменениях показателя: сначала быстрый рост или убывание, потом – относительная стабильность. Оптимизированная кривая хорошо адаптируется к подобному «поведению» величины. Логарифмический тренд подходит для прогнозирования продаж нового товара, который только вводится на рынок.

На начальном этапе задача производителя – увеличение клиентской базы. Когда у товара будет свой покупатель, его нужно удержать, обслужить.

Построим график и добавим логарифмическую линию тренда для прогноза продаж условного продукта:

R2 близок по значению к 1 (0,9633), что указывает на минимальную ошибку аппроксимации. Спрогнозируем объемы продаж в последующие периоды. Для этого нужно в уравнение вместо х подставлять номер периода.

Период 14 15 16 17 18 19 20
Прогноз 1005,4 1024,18 1041,74 1058,24 1073,8 1088,51 1102,47

Для расчета прогнозных цифр использовалась формула вида: =272,14*LN(B18)+287,21. Где В18 – номер периода.

Полиномиальная линия тренда в Excel

Данной кривой свойственны переменные возрастание и убывание. Для полиномов (многочленов) определяется степень (по количеству максимальных и минимальных величин). К примеру, один экстремум (минимум и максимум) – это вторая степень, два экстремума – третья степень, три – четвертая.

Полиномиальный тренд в Excel применяется для анализа большого набора данных о нестабильной величине. Посмотрим на примере первого набора значений (цены на нефть).

Чтобы получить такую величину достоверности аппроксимации (0,9256), пришлось поставить 6 степень.

Зато такой тренд позволяет составлять более-менее точные прогнозы.

Прогнозирование – это очень важный элемент практически любой сферы деятельности, начиная от экономики и заканчивая инженерией. Существует большое количество программного обеспечения, специализирующегося именно на этом направлении. К сожалению, далеко не все пользователи знают, что обычный табличный процессор Excel имеет в своем арсенале инструменты для выполнения прогнозирования, которые по своей эффективности мало чем уступают профессиональным программам. Давайте выясним, что это за инструменты, и как сделать прогноз на практике.

Важность прогнозирования спроса

Прогнозирование спроса актуально для бизнеса по целому ряду причин:

  1. Предприятия могут использовать данные прогнозирования доходов, чтобы помочь в планировании, постановке целей и составлении бюджета. Можно разработать план закупок, чтобы обеспечить соответствие ваших поставок потребительскому спросу на уровне продукта, если у вас есть четкое представление о том, как могут выглядеть ваши потенциальные продажи.
  2. Уровни запасов могут быть лучше оптимизированы, скорость оборота запасов может быть увеличена, а затраты на хранение могут быть снижены.
  3. Компании также могут использовать прогнозирование продаж, чтобы заранее прогнозировать и устранять любые проблемы в конвейере продаж. Это позволяет им отслеживать свой успех с течением времени. Многие владельцы компаний, занимающихся электронной коммерцией, понимают, что слишком маленький или слишком большой инвентарь может нанести ущерб операциям.
  4. Прогнозирование спроса дает вам представление о вашем предстоящем денежном потоке, позволяя вам более эффективно подготовиться к платежам поставщикам и другим операционным расходам, продолжая при этом инвестировать в рост вашей компании.
  5. Прогнозирование спроса предполагает знание того, когда следует нанять больше людей и выделить другие ресурсы, чтобы обеспечить бесперебойную работу в часы пик.

Возможности инструмента

Рассмотрим подробнее настройки функции. Для перехода в окно параметров из выпадающего списка нужно выбрать последнюю строчку.

Окно содержит четыре настройки, в которые входят цвет, объем и тип линии, а также параметры самого инструмента.

Параметры линии тренда можно условно поделить на четыре блока:

  1. Тип приближения.
  2. Название полученной кривой, которое формируется автоматически или может быть задано пользователем.
  3. Блок прогнозирования, который позволяет продлить линию тренда на заданное количество периодов вперед или назад, на основании имеющихся данных. Что позволяет оценить дальнейшее изменение исследуемой величины.
  4. Дополнительные опции, которые отражают математическую составляющую кривой. Самой интересной и полезной строчкой здесь является величина достоверности. Если значение коэффициента близко к единице, то ошибка минимальна и дальнейший прогноз будет достаточно точным.

Выведем на исходный график уравнение линии и коэффициент достоверности.

Как видите, значение близко к 0,5, это говорит о низкой достоверности полученной линии тренда, и дальнейший прогноз будет ошибочным.

Способ 3: интерполяция графика с помощью функции

Произвести интерполяцию графика можно также с помощью специальной функции НД. Она возвращает неопределенные значения в указанную ячейку.

  1. После того, как график построен и отредактирован, так как вам нужно, включая правильную расстановку подписи шкалы, остается только ликвидировать разрыв. Выделяем пустую ячейку в таблице, из которой подтягиваются данные. Жмем на уже знакомый нам значок «Вставить функцию».

Открывается Мастер функций. В категории «Проверка свойств и значений» или «Полный алфавитный перечень» находим и выделяем запись «НД». Жмем на кнопку «OK».

У данной функции нет аргумента, о чем и сообщает появившееся информационное окошко. Чтобы закрыть его просто жмем на кнопку «OK».

После этого действия в выбранной ячейке появилось значение ошибки «#Н/Д», но зато, как можно наблюдать, обрыв графика был автоматически устранен.

Можно сделать даже проще, не запуская Мастер функций, а просто с клавиатуры вбить в пустую ячейку значение «#Н/Д» без кавычек. Но это уже зависит от того, как какому пользователю удобнее.

Как видим, в программе Эксель можно выполнить интерполяцию, как табличных данных, используя функцию ПРЕДСКАЗ, так и графика. В последнем случае это осуществимо с помощью настроек графика или применения функции НД, вызывающей ошибку «#Н/Д». Выбор того, какой именно метод использовать, зависит от постановки задачи, а также от личных предпочтений пользователя.

Опишите, что у вас не получилось.
Наши специалисты постараются ответить максимально быстро.

ПРЕДСКАЗ и ТЕНДЕНЦИЯ в Excel

​ важно, чтобы эта​​ обязательно, так как​E12:E14​При добавлении линейного тренда​Но по ним​Функция ТЕНДЕНЦИЯ в Excel​ последующих значений необходимо​ (ПРЕДСКАЗ, РОСТ) и​ 10 баллов. Известны​ использовать в качестве​ виде массива чисел​ y=aln(x)+b.​

  1. ​A26:A33 – диапазон ячеек​доверительный интервал​

    ​.​

  2. ​ прослеживаются сезонные тенденции,​​ Excel автоматически выделит​​ статья была вам​ ПРЕДСКАЗ.ETS.СЕЗОННОСТЬ автоматически отсортирует​

    ​и нажмите клавишу​​ на график Excel,​

​ нет почти никакой​​ для составления прогнозов.​ выделить диапазон соответствующего​​ имеет следующий синтаксис:​​ данные о посещаемости​ формулы массива.​ или ссылки на​Результат расчетов:​ с номерами дней​в разделе​Заполнить отсутствующие точки с​​ то рекомендуется начинать​​ остальные данные.​​ полезна. Просим вас​​ ее для расчетов.​

  1. ​Delete​ программа может отображать​ информации или примеров.​​С помощью функции​​ количества ячеек и​= ТЕНДЕНЦИЯ(известные_значения_y; ; ;​

    ​ нескольких последних сеансов.​​Функция ТЕНДЕНЦИЯ в Excel​

​ диапазон ячеек с​​Для сравнения, произведем расчет​​ месяца, для которых​​Параметры​ помощью​​ прогнозирование с даты,​​На вкладке​ уделить пару секунд​ Если в заданной​.​ уравнение прямо на​ Может кто сталкивался?​​ ТЕНДЕНЦИЯ можно прогнозировать​​ для отображения результата​​ )​​ Предположить, какой будет​

​ используется при расчетах​ числами;​​ с использованием функции​​ данные о стоимости​

​окна…​

office-guru.ru>

Разновидности

1 Линейная аппроксимация отлично подойдет для исследования величины, которая стабильно растет или убывает. Тогда кривая будет иметь вид прямой. Формула будет содержать одну переменную. Коэффициент достоверности близок к единице, что говорит о высокой точности совпадения прямой и массива данных. На основании такой линии тренда прогноз будет достаточно точным.

2. Экспоненциальная кривая используется только для массивов с положительными значениями, которые изменяются непрерывно.

3. Логарифмическую линию тренда целесообразнее использовать, если на первоначальном этапе наблюдается резкое увеличение или снижение показателя, а потом наступает период стабильности. Здесь формула содержит логарифм натуральный.

4. Полиномиальная аппроксимация применяется при большом количестве неоднородных данных. В основе лежит степенное уравнение, при этом количество степеней зависит от числа максимумов. Применим этот тип для первоначального примера с золотом.

Уравнение показывает переменные до третьей степени, поскольку график имеет два пика. Также видим, что коэффициент достоверности близок к единице (вместо 0,5 при линейной аппроксимации), значит линия тренда выбрана правильно и дальнейший прогноз будет точным.

Как видите, для статистического анализа данных необходимо правильно выбрать тип математического уравнения, которое максимально точно будет соответствовать характеру изменения величины. На основании полученных кривых можно осуществлять прогноз, подставляя в уравнение необходимое число.

Общая информация

Линия тренда – это инструмент статистического анализа, который позволяет спрогнозировать дальнейшее развитие событий. Чтобы построить кривую, необходимо иметь массив данных, который отображает изменение величины во времени. На основании этой информации строится график, а затем применятся специализированная функция. Рассмотрим изменение цены золота за грамм в долларах с 2015 по 2019 год.

  1. Составляете небольшую таблицу.
  1. На основании этих данных строите линейный график. Для этого переходите во вкладку Вставка на Панели инструментов и выбираете нужный тип диаграммы.

  1. Получается некоторая кривая.

  1. Необходимо отредактировать график при помощи стандартных инструментов, которые находятся во вкладках Конструктор, Макет и Формат. Переименовываете диаграмму, выставляете пределы по вертикальной оси, чтобы изменения величины были более явными, подписываете оси, добавляете контрольные точки, а также подпись данных. После этого проводите окончательное форматирование.

  1. Чтобы добавить линию тренда, необходимо во вкладке Макет нажать одноименную кнопку и выбрать нужный тип приближения.

На заметку! Если линия тренда не активна, то используется не тот тип диаграммы. Данная функция работает только с диаграммами типа гистограмма, график, линейчатая и точечная.

6. Так выглядит линия тренда на графике.

Особенности использования функции СЕГОДНЯ в Excel

Функция имеет синтаксис без аргументов:

Данная функция не принимает аргументов.

  1. В Excel используется специальный формат представления дат для упрощения операций по расчету промежутков времени и дат. Excel работает с датами от 00.01.1900 (нулевой день был введен специально, поскольку отсчет начинается с нуля) до 31.12.9999, при этом каждая дата из данного промежутка представлена в виде количества дней, прошедших от начала отсчета – 00.01.1900.
  2. Если в результате выполнения функции СЕГОДНЯ требуется получить значение в форме записи дат, необходимо настроить соответствующий формат данных, отображаемых в ячейке. Если необходимо получить число в коде времени Excel, следует выбрать Числовой формат данных.
  3. Функция СЕГОДНЯ предоставляет динамически обновляемый результат в зависимости от даты открытия книги или обновления ее данных.
  4. Автоматическое обновление возвращаемого данной функцией результат может не происходить, если в пункте меню Параметры категории Формулы разделе Параметры вычислений не выбран вариант автоматического вычисления введенных формул.
  5. Данная функция сама по себе используется достаточно редко, однако часто применяется для вычисления разницы дат совместно с другими функциями для работы со временем и датами.

Анализ прогноза спроса продукции в Excel по функции ПРЕДСКАЗ

Пример 2. Компания недавно представила новый продукт. С момента вывода на рынок ежедневно ведется учет количества клиентов, купивших этот продукт. Предположить, каким будет спрос на протяжении 5 последующих дней.

Вид исходной таблицы данных:

Пример 2.» src=»https://exceltable.com/funkcii-excel/images/funkcii-excel145-6.png» class=»screen»>

Как видно, в первые дни спрос был небольшим, затем он рос достаточно большими темпами, а на протяжении последних трех дней изменялся незначительно. Это свидетельствует о том, что основным фактором роста продаж на данный момент является не расширение базы клиентов, а развитие продаж с постоянными клиентами. В таких случаях рекомендуют использовать не линейную регрессию, а логарифмический тренд, чтобы результаты прогнозов были более точными.

Рассчитаем значения логарифмического тренда с помощью функции ПРЕДСКАЗ следующим способом:

Как видно, в качестве первого аргумента представлен массив натуральных логарифмов последующих номеров дней. Таким образом получаем функцию логарифмического тренда, которая записывается как y=aln(x)+b.

Для сравнения, произведем расчет с использованием функции линейного тренда:

И для визуального сравнительного анализа построим простой график.

Как видно, функцию линейной регрессии следует использовать в тех случаях, когда наблюдается постоянный рост какой-либо величины. В данном случае функция логарифмического тренда позволяет получить более правдоподобные данные (более наглядно при большем количестве данных).

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: