Как сделать экспоненциальное сглаживание в excel • экспонента что это такое

Лист прогноза в excel как включить

Вычисление погрешности

В столбце E, начиная с ячейки Е11, MS EXCEL разместил формулы для вычисления погрешностей (англ. Standard Errors):

Т.е. данная погрешность вычисляется по формуле:

Значения y – это значения исходного ряда в период i. Значения «y с крышечкой» — значения ряда, полученного методом Экспоненциального сглаживания, в тот же в период i. Значение n для экспоненциального сглаживания всегда равно 3, т.е. ошибка вычисляется за 3 последних периода (последние 3 значения учитываются с макимальным весом при расчете текущего значения сглаженного ряда и, соответственно, вносят более 50% вклада в его значение. Величина вклада сильно зависит от альфа).

Подробнее об этой погрешности см. соответствующий раздел в статье про Скользящее среднее.

Идентификация выбросов временных рядов

Выбросы в данных временных рядов — это значения, которые существенно отличаются от закономерностей и тенденций других значений во временных рядах. Например, большое количество покупок в интернете во время праздников или большое количество дорожно-транспортных происшествий во время сильных ливней, скорее всего, будут обнаружены как выбросы в их временных рядах. Простые ошибки ввода данных, такие как пропуск десятичной части числа, являются еще одним распространенным источником выбросов

Выявление выбросов в прогнозе временных рядов важно, поскольку выбросы влияют на прогнозную модель, которая используется для прогнозирования будущих значений, и даже небольшое количество выбросов во временных рядах местоположения может значительно снизить точность и надежность прогнозов. Местоположения с выбросами, особенно в начале или в конце временного ряда, могут давать неверные прогнозы, и идентификация этих местоположений помогает определить, насколько вы должны быть уверены в прогнозируемых значениях в каждом местоположении

Выбросы определяются не просто их исходными значениями, а тем, насколько их значения отличаются от установленных значений прогнозной модели. Это означает, что определение того, является ли значение выбросом, является контекстуальным и зависит как от его места, так и от времени. Прогнозная модель определяет, какое значение ожидается на основе всего временного ряда, а выбросы – это значения, которые сильно отклоняются от этого базового уровня. Например, рассмотрим временной ряд среднегодовой температуры. Поскольку средние температуры увеличились за последние несколько десятилетий, подходящая прогнозная модель температуры также будет увеличиваться с течением времени, чтобы отразить это увеличение. Это означает, что значение температуры, которое будет считаться типичным, а не выбросом в 1950 году, скорее всего, будет считаться выбросом, если такая же температура произойдет в 2020 году. Другими словами, типичная температура 1950 года будет считаться очень низкой по стандартам 2020 года.

Вы можете выбрать обнаружение выбросов временных рядов в каждом местоположении с помощью параметра Идентифицировать выбросы. Если указано, то для каждого местоположения выполняется обобщенный тест экстремальных отклонений (ESD) для проверки выбросов временных рядов. Уровень достоверности теста можно задать с помощью параметра Уровень достоверности, и по умолчанию используется 90 — процентная достоверность. Обобщенный тест ESD итеративно проверяет наличие одного выброса, двух выбросов, трех выбросов и т. д. в каждом местоположении вплоть до значения параметра Максимального числа выбросов (по умолчанию 5 процентов от числа временных шагов, округленных вниз), и возвращается наибольшее статистически значимое число выбросов. Количество выбросов в каждом местоположении можно увидеть в таблице атрибутов выходных объектов, а отдельные выбросы – во всплывающих диаграммах временных рядов, которые рассматриваются в следующем разделе.

Прогнозирование на основе метода экспоненциального сглаживания

  1. Выделяем диапазон, в котором представлены экспоненты. Переходим во вкладку «Вставка». На ленте в группе настроек «Диаграммы» нажимаем на кнопку «График». Открывается список графиков. Выбирайте тот тип, который считаете более подходящим для выполнения конкретных задач.

(2) Очистка данных Сначала мы удаляем записи, которые не соответствуют требованиям, а затем удаляем ненужные столбцы, оставляя только цены закрытия акций, которые нас интересуют.

Полезные сведения → Как объединить ячейки → Как вставить значения → Аргументы функции → Работа с форматами → Функция ЕСЛИ → Как удалить пробелы → Функция впр vlookup→ Работа с таблицами

Методы прогнозирования

Методы прогнозирования основываются на выявлении тенденции во временном ряду и последующем использовании найденного значения для предсказания будущих значений. В методах прогнозирования выделяют тренд и сезонность, в общем случае, все типы сезонности могут быть найдены последовательными итерациями. Например, при анализе данных за год, можно выделить сезонность времени года, а в оставшемся тренде найти сезонность по дням недели и так далее.

Двойное экспоненциальное сглаживание

Двойное экспоненциальное сглаживание выдаёт сглаженное значение уровня и тенденции.

Smooth — сглаживание, сглаженный уровень на период τ, sτ, зависит от значения уровня на текущий период (Dτ), тренда за предыдущий период (tτ-1) и рассчитанного сглаженного значения на предыдущий период (sτ-1): sτ = αDτ + (1 — α)(sτ-1 + tτ-1) Trend — тенденция, тренд на период τ, tτ, зависит от рассчитанного сглаженного значения за предыдущий и текущий периоды (sτ и sτ-1) и от предыдущей тенденции: tτ = β(sτ-sτ-1) + (1-β)tτ-1 Рассчитанные по данным формулам уровень и тренд могут быть использованы в прогнозировании: D’τ+h = sτ + h·tτ

При расчёте, значения s и t для первого периода назначают s1 = D1 и t=0

Метод Хольт-Винтерса

Метод Хольт-Винтерса включает в себя сезонную составляющую, т.е. периодичность. Существуют две разновидности метода — мультипликативный и аддитивный. В отличие от двойного экспоненциального сглаживания, метод Хольт-Винтерса изучает также влияние периодичности.

Общая идея нахождения значений сглаженного уровня, тренда и периодичности заключается в следующем: сглаженный уровень (s — smooth, иногда используют l — level) — это базовый уровень значений, тренд (t — trend) — это показатель скорости роста, разница между сглаженными значениями текущего и предыдущего периода. Для изучения периодичности (p — period), мы разбиваем данные на периоды размером k и выделяем влияние каждого элемента (1,2. k) периода на сглаженный уровень.

Для более точных расчётов вводится показатель обратной связи. В общем понимании, обратная связь — это влияние предыдущих значений на новые: например, когда Вы начинаете говорить, Вы регулируете громкость своего голоса в зависимости от того, что слышат Ваши уши — это и есть обратная связь.

Для начала расчётов, значения s, t и k, в самом простом виде, могут быть выбираны как sτ = Dτ, t = 0, p = 0.

Для прогнозирования используется следующая формула:

Мультипликативный метод Хольт-Винтерса

Мультипликативный метод отличается от аддитивного тем, что параметры, влияющие на периодичность и сглаженный уровень рассчитываются отношением:

Для прогнозирования используется следующая формула:

Алгоритм прогнозирования объёма продаж в MS Excel

На сегодняшний день наука достаточно далеко продвинулась в разработке технологий прогнозирования. Специалистам хорошо известны методы нейросетевого прогнозирования, нечёткой логики и т.п. Разработаны соответствующие программные пакеты, но на практике они, к сожалению, не всегда доступны рядовому пользователю, а в то же время многие из этих проблем можно достаточно успешно решать, используя методы исследования операций, в частности имитационное моделирование, теорию игр, регрессионный и трендовый анализ, реализуя эти алгоритмы в широко известном и распространённом пакете прикладных программ MS Excel.

В данной статье представлен один из возможных алгоритмов построения прогноза объёма реализации для продуктов с сезонным характером продаж. Сразу следует отметить, что перечень таких товаров гораздо шире, чем это кажется. Дело в том, что понятие “сезон” в прогнозировании применим к любым систематическим колебаниям, например, если речь идёт об изучении товарооборота в течение недели под термином “сезон” понимается один день. Кроме того, цикл колебаний может существенно отличаться (как в большую, так и в меньшую сторону) от величины один год. И если удаётся выявить величину цикла этих колебаний, то такой временной ряд можно использовать для прогнозирования с использованием аддитивных и мультипликативных моделей.

Аддитивную модель прогнозирования можно представить в виде формулы:

где: F – прогнозируемое значение; Т – тренд; S – сезонная компонента; Е – ошибка прогноза.

Применение мультипликативных моделей обусловлено тем, что в некоторых временных рядах значение сезонной компоненты представляет собой определенную долю трендового значения. Эти модели можно представить формулой:

На практике отличить аддитивную модель от мультипликативной можно по величине сезонной вариации. Аддитивной модели присуща практически постоянная сезонная вариация, тогда как у мультипликативной она возрастает или убывает, графически это выражается в изменении амплитуды колебания сезонного фактора, как это показано на рисунке 1.

Рис. 1. Аддитивная и мультипликативные модели прогнозирования.

Алгоритм построения прогнозной модели

Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:

1.Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.

2 .Вычитая из фактических значений объёмов продаж значения тренда, определяют величины сезонной компоненты и корректируют таким образом, чтобы их сумма была равна нулю.

3.Рассчитываются ошибки модели как разности между фактическими значениями и значениями модели .

4.Строится модель прогнозирования:

где: F – прогнозируемое значение; Т – тренд; S – сезонная компонента; Е – ошибка модели.

5.На основе модели строится окончательный прогноз объёма продаж. Для этого предлагается использовать методы экспоненциального сглаживания, что позволяет учесть возможное будущее изменение экономических тенденций, на основе которых построена трендовая модель. Сущность данной поправки заключается в том, что она нивелирует недостаток адаптивных моделей, а именно, позволяет быстро учесть наметившиеся новые экономические тенденции.

F пр t = a F ф t-1 + (1-а) F м t

где: F пр t – прогнозное значение объёма продаж; F ф t- 1 – фактическое значение объёма продаж в предыдущем году; F м t – значение модели; а – константа сглаживания

Практическая реализация данного метода выявила следующие его особенности:

  • для составления прогноза необходимо точно знать величину сезона. Исследования показывают, что множество продуктов имеют сезонный характер, величина сезона при этом может быть различной и колебаться от одной недели до десяти лет и более;
  • применение полиномиального тренда вместо линейного позволяет значительно сократить ошибку модели;
  • при наличии достаточного количества данных метод даёт хорошую аппроксимацию и может быть эффективно использован при прогнозировании объема продаж в инвестиционном проектировании.

Применение алгоритма рассмотрим на следующем примере.

Исходные данные: объёмы реализации продукции за два сезона. В качестве исходной информации для прогнозирования была использована информация об объёмах сбыта мороженого “Пломбир” одной из фирм в Нижнем Новгороде. Данная статистика характеризуется тем, что значения объёма продаж имеют выраженный сезонный характер с возрастающим трендом. Исходная информация представлена в табл. 1.

Таблица 1. Фактические объёмы реализации продукции

Как сгладить углы линейного графика в Excel?

Когда вы вставляете линейную диаграмму в Excel, как правило, линейная диаграмма имеет углы, которые могут быть недостаточно красивыми и гладкими. Теперь я могу рассказать вам, как сгладить углы линейной диаграммы, чтобы удовлетворить ваши потребности в Excel.

Вкладка Office позволяет редактировать и просматривать в Office с вкладками и значительно упрощает работу .

  • Повторное использование чего угодно: Добавляйте наиболее часто используемые или сложные формулы, диаграммы и все остальное в избранное и быстро используйте их в будущем.
  • Более 20 текстовых функций: Извлечь число из текстовой строки; Извлечь или удалить часть текстов; Преобразование чисел и валют в английские слова.
  • Инструменты слияния : Несколько книг и листов в одну; Объединить несколько ячеек / строк / столбцов без потери данных; Объедините повторяющиеся строки и сумму.
  • Разделить инструменты : Разделение данных на несколько листов в зависимости от ценности; Из одной книги в несколько файлов Excel, PDF или CSV; От одного столбца к нескольким столбцам.
  • Вставить пропуск Скрытые / отфильтрованные строки; Подсчет и сумма по цвету фона ; Отправляйте персонализированные электронные письма нескольким получателям массово.
  • Суперфильтр: Создавайте расширенные схемы фильтров и применяйте их к любым листам; Сортировать по неделям, дням, периодичности и др .; Фильтр жирным шрифтом, формулы, комментарий .
  • Более 300 мощных функций; Работает с Office 2007-2019 и 365; Поддерживает все языки; Простое развертывание на вашем предприятии или в организации.

Сгладьте линейный график

Удивительный! Использование эффективных вкладок в Excel, таких как Chrome, Firefox и Safari!
Экономьте 50% своего времени и сокращайте тысячи щелчков мышью каждый день!

Чтобы изменить углы линии на плавную, очень просто, сделайте следующее:

1. Щелкните правой кнопкой мыши нужную серию и выберите Форматировать ряд данных в контекстном меню. Смотрите скриншот:

2. в Форматировать ряд данных диалоговое окно, нажмите Стиль линии на левой панели и проверьте Сглаженная линия вариант в правом разделе. Смотрите скриншот:

3. Закройте диалоговое окно. Затем вы можете увидеть, как линейный график стал плавным.

Наконечник: В Excel 2013 после нажатия Формат даты серии, перейдите, чтобы нажать Заливка и линия Вкладка в Форматировать ряд данных панель, а затем спуститесь, чтобы проверить Сглаженная линия опцию.

  • 1с зуп паспортные данные где хранятся

      

  • Как поставить высотные отметки в автокаде

      

  • Как сделать аватарку в paint

      

  • Формат даты oracle utc

      

  • Инвестиции в 1с какой счет

Выявление закономерностей в данных

Есть способ испытать прогностическую модель на прочность — сравнить погрешности сами с собой, сдвинутыми на шаг (или несколько шагов). Если отклонения случайны, то улучшить модель нельзя. Однако, возможно, в данных о спросе есть сезонный фактор. Концепция погрешности, коррелирующей с собственной версией за другой период, называется автокорреляцией (подробнее об автокорреляции см. Простая линейная регрессия). Чтобы рассчитать автокорреляцию, начните с данных об ошибке прогноза за каждый период (столбец F на рис. 7 переносим в столбец В на рис. 10). Далее определите среднюю ошибку прогноза (рис. 10, ячейка В39; формула в ячейке: =СРЗНАЧ(B3:B38)). В столбце С рассчитайте отклонение ошибки прогноза от среднего; формула в ячейке С3: =B3-B$39. Далее последовательно сдвигайте столбец С на столбец вправо и строку вниз. Формулы в ячейках D39: =СУММПРОИЗВ($C3:$C38;D3:D38), D41: =D39/$C39, D42: =2/КОРЕНЬ(36), D43: =-2/КОРЕНЬ(36).

Рис. 10. Расчет автокорреляции

Что может значить для одного из столбцов D:O «синхронное движение» со столбцом С. Например, если столбцы С и D синхронны, то число, отрицательное в одном из них, должно быть отрицательным и в другом, положительное в одном, положительное – в другом. Это означает, что сумма произведений двух столбцов будет значительной (отличия накапливаются). Или, что тоже самое, чем ближе значение в диапазоне D41:О41 к нулю, тем ниже корреляция столбца (соответственно от D до О) со столбцом С (рис. 11).

Рис. 11. Диаграмма автокорреляции

Одна автокорреляция выше критического значения. Погрешность, сдвинутая на год, коррелирует сама с собой. Это означает 12-месячный сезонный цикл. И это неудивительно. Если вы посмотрите на график спроса (рис. 2), то окажется, что есть пики спроса на каждое Рождество и провалы в апреле-мае. Рассмотрим технику прогнозирования, учитывающую сезонность.

Метод экспоненциального сглаживания.

Альтернативный подход к сокращению разброса значений ряда состоит в использовании метода экспоненциального сглаживания. Метод получил название «экспоненциальное сглаживание» в связи с тем, что каждое значение периодов, уходящих в прошлое, уменьшается на множитель (1 – α).

Каждое сглаженное значение рассчитывается по формуле вида:

St =aYt +(1−α)St−1,

где St – текущее сглаженное значение;
Yt – текущее значение временного ряда; St – 1 – предыдущее сглаженное значение; α – сглаживающая константа, 0 ≤ α ≤ 1.

Чем меньше значение константы α , тем менее оно чувствительно к изменениям тренда в данном временном ряду.

Постановка задачи

Исходные данные

Для начала, давайте определимся, какие у нас есть исходные данные и что нам нужно получить на выходе. Фактически, все что у нас есть, это некоторые исторические данные. Если мы говорим о прогнозировании продаж, то историческими данными будут продажи за предыдущие периоды.

Примечание. Собранные в разные моменты времени значения одной и той же величины образуют временной ряд. Каждое значение такого временного ряда называется измерением. Например: данные о продажах за последние 5 лет по месяцам — временной ряд; продажи за январь прошлого года — измерение.

Составляющие прогноза

Следующий шаг: давайте определимся, что нам нужно учесть при построении прогноза. Когда мы исследуем наши данные, нам необходимо учесть следующие факторы:

  • Изменение нашей пронозируемой величины (например, продаж) подчиняется некоторому закону. Другими словами, в временном ряде можно проследить некую тенденцию. В математике такая тенденция называется трендом.
  • Изменение значений в временном ряде может зависить от промежутка времени. Другими словами, при построении модели необходимо будет учесть коэффициент сезонности. Например, продажи арбузов в январе и августе не могут быть одинаковыми, т.к. это сезонный продукт и летом продажи значительно выше.
  • Изменение значений в временном ряде периодически повторяется, т.е. наблюдается некоторая цикличность.

Эти три пункта в совокупность образуют регулярную составляющую временного ряда.

Примечание. Не обязательно все три элемента регулярной составляющей должны присутствовать в временном ряде.

Однако, помимо регулярной составляющей, в временном ряде присутствует еще некоторое случайное отклонение. Интуитивно это понятно — продажи могут зависеть от многих факторов, некоторые из которых могут быть случайными.

Вывод. Чтобы комплексно описать временной ряд, необходимо учесть 2 главных компонента: регулярную составляющую (тренд + сезонность + цикличность) и случайную составляющую.

Виды моделей

Следующий вопрос, на который нужно ответить при построении прогноза: “А какие модели временного ряда бывают?”

Обычно выделяют два основных вида:

  • Аддитивная модель: Уровень временного ряда = Тренд + Сезонность + Случайные отклонения
  • Мультипликативная модель: Уровень временного ряда = Тренд X Сезонность X Случайные отклонения

Иногда также выделают смешанную модель в отдельную группу:

Смешанная модель: Уровень временного ряда = Тренд X Сезонность + Случайные отклонения

С моделями мы определились, но теперь возникает еще один вопрос: «А когда какую модель лучше использовать?»

Классический вариант такой: — Аддитивная модель используется, если амплитуда колебаний более-менее постоянная; — Мультипликативная – если амплитуда колебаний зависит от значения сезонной компоненты.

Пример:

Рассмотрим ВПР в подробностях.

По ходу статьи мы:

  1. Рассчитаем коэффициенты сезонности к 3-м месяцам по товарной группе;
  2. Рассчитаем скользящую среднюю к 3-м месяцам по позициям;
  3. Скорректируем скользящую среднюю сезонностью по группе. Коэффициенты сезонности подтянем с помощью ВПР и разберем функция по частям.

1. Рассчитаем коэффициенты сезонности к 3-м месяцам по товарной группе;

Рассчитаем коэффициенты сезонности к 3-м месяцам по товарной группе 1 и 2 с помощью Forecast4AC PRO (Как самостоятельно рассчитать коэффициенты сезонности к 3-м месяцам можете прочитать в статье «Расчет прогноза по методу скользящей средней!»)

Для этого установим курсор в начало продаж по товарным группам:

Выберите в настройках «Сезонность» «к 3-м месяцам»:

Нажимаем кнопку «Рассчитать». Получаем в продолжении ряда коэффициенты сезонности к 3-м месяцам:

Копируем сезонность на отдельный лист «к 3-м» получаем табличку, в которой в первом столбце названия товарных групп, а в столбцах со 2-го по 13-й — коэффициенты сезонности для 1 — 12 месяцев:

2. Рассчитаем скользящую среднюю к 3-м месяцам по позициям.

Используем стандартную функцию =срзнач(продажи за 3 последних месяца):

Протянем среднюю на все позиции на 24 месяца вперед:

3. Скорректируем скользящую среднюю сезонностью по группе и разберем ВПР.

Теперь средние продажи умножим на коэффициент сезонности по товарной группе, который подтянем с помощью функции ВПР.

В ВПР передаем (искомое значение (название товарной группы); таблицу, в которой ищем искомое значение; номер столбца, из которого возвращаем коэффициент сезонности для соответствующего месяца; и интервальный просмотр (ставим «0» — т.к

нам важно точно совпадения названия товарной группы)). 1

В искомое значение передаем название товарной группы и фиксируем столбец:

1. В искомое значение передаем название товарной группы и фиксируем столбец:

=СРЗНАЧ(BD3:BF3)*впр($C3 (передаем название товарной группы и фиксируем столбец с помощью значка «$»);’к 3-м’!$A$3:$M$4;данные!BG$2+1;0)

Подробнее о фиксировании ссылок читайте в статье «Как зафиксировать ссылку в Excel».

2. В таблицу передаем таблицу с коэффициентами сезонности для товарных групп и фиксируем таблицу:

=СРЗНАЧ(BD3:BF3)*впр($C3;’к 3-м’!$A$3:$M$4(передаем таблицу с товарными группами и фиксируем таблицу с помощью значка «$»);данные!BG$2+1;0)

В первом столбце таблицы содержатся искомые значения — названия товарных групп. Фиксируем таблицу, чтобы формула имела такой вид ‘к 3-м’!$A$3:$M$4 и ссылки не поехали, когда мы будем протягивать формулу.

3. Далее в ВПР передаем номер столбца, в котором содержится искомый коэффициент сезонности  соответствующего месяца сезонности в прогнозе

=СРЗНАЧ(BD3:BF3)*впр($C3;’к 3-м’!$A$3:$M$4;данные!BG$2+1(передаем номер столбца в котором содержится искомый коэффициент сезонности для соответствующего месяца и фиксируем строку с номерами столбцов месяца  с помощью значка «$»);0)

Т.к. номер столбца в таблице с сезонностью для первого месяца будет вторым, то прибавляем «1»

=СРЗНАЧ(BD3:BF3)*впр($C3;’к 3-м’!$A$3:$M$4;данные!BG$2+1(прибавляем 1, т.к. номер столбца в таблице с сезонностью для первого месяца 2, в первом столбце название товарных групп);0)

4. =СРЗНАЧ(BD3:BF3)*впр($C3;’к 3-м’!$A$3:$M$4;данные!BG$2+1;0 (ищем точное соответствие названий товарных групп))

Протягиваем полученную формулу, получаем средние продажи за 3 предыдущие месяца по товарной позиции скорректированные сезонностью по товарной группе к 3-м месяцам:

=СРЗНАЧ(BD3:BF3)*ВПР($C3;’к 3-м’!$A$3:$M$4;данные!BG$2+1;0)

Получаем расчет прогноза по методу скользящей средней к 3-м месяцам по товарным позициям, используя сезонность по товарной группе.

Данный подход может значительно увеличить точность расчета прогноза по товарным позициям внутри группы. Попробуйте рассчитать прогноз по методу скользящей средней к 2-м и 4-м месяцам, используя функцию ВПР и Forecast4AC PRO на текущий год, и сравните прогнозы с фактическими продажами. Выберите модель, которая была максимально близка к факту.

Точных вам прогнозов!
  • Novo Forecast Lite — автоматический расчет прогноза в Excel.
  • 4analytics — ABC-XYZ-анализ и анализ выбросов в Excel.
  • Qlik Sense Desktop и QlikView Personal Edition — BI-системы для анализа и визуализации данных.

Тестируйте возможности платных решений:

Novo Forecast PRO — прогнозирование в Excel для больших массивов данных.

Получите 10 рекомендаций по повышению точности прогнозов до 90% и выше.

Легкая версия построения

Процесс построения линии тренда состоит из трех этапов: ввод в
excel исходных данных, построение графика, выбор линии тренда и ее
параметров.

Начнем с ввода данных.

1. Создаем в Excel таблицу с исходными данными.

(Рисунок 1)

2. Выделяем ячейки B3:B17 и перейдя на закладку «Вставка»
выбираем «График».

(Рисунок 2)

3. После того как график построен, можно добавить подписи и
заголовок.

Для начала кликнем левой кнопкой мыши по границе графика, чтобы
выделить его.

Затем перейдем на закладку «Конструктор» и выберем «Макет
1».

(Рисунок 3)

4. Переходим к построению линии тренда. Для этого снова выделяем
график и переходим на закладку «Макет».

(Рисунок 4)

5. Нажимаем на кнопку «Линия тренда» и выбираем «линейное
приближение» или «экспоненциальное приближение».

(Рисунок 5)

Так мы построили первичную Линию тренда, которая может мало
соответствовать действительности.

Это наш промежуточный результат.

(Рисунок 6)

И поэтому потребуется настроить параметры нашей линии тренда или
выбрать другую функцию.

Шаг 2

Так как мы рассматриваем аддитивную модель вида:

Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и значениями скользящей средней St+Et = Yt-Tt, так как Yt и Tt мы уже знаем.

Используем оценки сезонной компоненты (St+Et) для расчета значений сезонной компоненты St. Для этого найдем средние за каждый интервал (по всем годам) оценки сезонной компоненты St.

Средняя оценка сезонной компоненты находится как сумма по столбцу, деленная на количество заполненных строк в этом столбце. В нашем случае оценки сезонной составляющей расположились в строках без пересечений, поэтому сумма по столбцам состоит из одиночных значений, следовательно и среднее будет таким же. Если бы мы располагали периодом побольше, например с 2015, у нас бы добавилась еще одна строка и мы смогли бы полноценно найти среднее, поделив сумму на 2.

В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем интервалам должна быть равна нулю. Поэтому найдя значение случайной составляющей, поделив сумму средних оценок сезонной составляющей на 12, мы вычитаем ее значение из каждой средней оценки и получаем скорректированную сезонную компоненту, St.

Далее, заполняем нашу таблицу значениями сезонной составляющей дублируя ряд каждые 12 месяцев, то есть три раза:

Прогнозирование временного ряда в Excel

Составим прогноз продаж, используя данные из предыдущего примера.

На график, отображающий фактические объемы реализации продукции, добавим линию тренда (правая кнопка по графику – «Добавить линию тренда»).

Настраиваем параметры линии тренда:

Выбираем полиномиальный тренд, что максимально сократить ошибку прогнозной модели.

R2 = 0,9567, что означает: данное отношение объясняет 95,67% изменений объемов продаж с течением времени.

Уравнение тренда – это модель формулы для расчета прогнозных значений.

Большинство авторов для прогнозирования продаж советуют использовать линейную линию тренда. Чтобы на графике увидеть прогноз, в параметрах необходимо установить количество периодов.

Получаем достаточно оптимистичный результат:

В нашем примере все-таки экспоненциальная зависимость. Поэтому при построении линейного тренда больше ошибок и неточностей.

Для прогнозирования экспоненциальной зависимости в Excel можно использовать также функцию РОСТ.

Для линейной зависимости – ТЕНДЕНЦИЯ.

При составлении прогнозов нельзя использовать какой-то один метод: велика вероятность больших отклонений и неточностей.

Определение коэффициентов модели

Строим график. По горизонтали видим отложенные месяцы, по вертикали объем продаж:

В Google Sheets выбираем Редактор диаграмм
-> Дополнительные
и ставим галочку возле Линии тренда
. В настройках выбираем Ярлык
Уравнение
и Показать R^2
.

Если вы делаете все в MS Excel, то правой кнопкой мыши кликаем на график и в выпадающем меню выбираем «Добавить линию тренда».

По умолчанию строится линейная функция. Справа выбираем «Показывать уравнение на диаграмме» и «Величину достоверности аппроксимации R^2».

Вот, что получилось:

На графике мы видим уравнение функции:

y = 4856*x + 105104

Она описывает объем продаж в зависимости от номера месяца, на который мы хотим эти продажи спрогнозировать. Рядом видим коэффициент детерминации R^2, который говорит о качестве модели и на сколько хорошо она описывает наши продажи (Y). Чем ближе к 1, тем лучше.

У меня R^2 = 0,75. Это средний показатель, он говорит о том, что в модели не учтены какие-то другие значимые факторы помимо времени t, например, это может быть сезонность.

Как сделать сглаживание графика в excel?

Чуть ранее мы уже писали, как красиво оформить нулевые/пустые значения на графике, чтобы диаграмма не получалась «зубчатой». Помимо этого, для лучшей визуализации информации иногда нужно сделать сглаживание графика в Excel. Как это сделать? Читайте ниже

Сразу хотел бы написать где можно почитать, как создавать графики — тут и тут. Далее разберем как сделать линию графика чуть более красивее.

Сглаживание графика в Excel. Как быстро сделать?

Часто соединения узлов графика выглядят некрасиво, если линии на графике расположены под острыми углами. Как сделать плавную линию? Правой кнопкой мыши нажимаем на сам график — выплывает окно —

Формат ряда данных (см. первую картинку) выбираем — пункт Тип линии -ставим галочку — Сглаженная линия

Теперь линия сгладилась.

Экспоненциальное сглаживание в Excel

В Excel можно подключить пакет анализа для сглаживания самих данных.

Такое сглаживание это метод применяемый для сглаживания временных рядом — статья википедии

Зайдите в меню — Параметры Excel — Надстройки — Пакет анализа (в правом окне) и в самом низу нажимайте Перейти

В открывшемся окне находим Экспоненциальное сглаживание.

Как найти прямую приближенных значений

Всегда можно построить линию приближенных значений — линию тренда — она покажет куда идет динамика графика, какое направление имеют события графика

Поделитесь нашей статьей в ваших соцсетях:

(Visited 14 832 times, 37 visits today)

Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: