F критерий фишера формула excel

Нормальное распределение случайной величины в excel • распределение стьюдента

Шаг № 8: Измените тип диаграммы для серии этикеток.

Наш следующий шаг — изменить тип диаграммы недавно добавленной серии, чтобы маркеры данных отображались в виде точек. Для этого щелкните правой кнопкой мыши график диаграммы и выберите «Изменить тип диаграммы.”

Затем создайте комбинированную диаграмму:

  1. Перейдите к Комбо таб.
  2. Для Серия «Series2», изменение «Тип диаграммы» к «Разброс.

    Примечание. Убедитесь, что «Серия1»Остается как«Скаттер с плавными линиями. » Иногда Excel изменяет его, когда вы делаете Комбо Также убедитесь, что «Серия1”Не перемещается на вторичную ось — флажок рядом с типом диаграммы не должен быть отмечен.

  3. Нажмите «Ok.”

Проверка статистической значимости регрессии по функции FРАСПОБР

Пример 2.
Произвести проверку статистической значимости уравнения множественной регрессии с помощью F-критерия Фишера, сделать выводы.

Для проверки значимости уравнения в целом выдвинем гипотезу Н 0 о статистической незначимости коэффициента детерминации и противоположную ей гипотезу Н 1 о статистической значимости коэффициента детерминации:

Н 1: R 2 ≠ 0.

Проверим гипотезы с помощью F-критерия Фишера. Показатели приведены в таблице 2.

Таблица 2 – Исходные данные

Для этого используем в пакете Excel функцию:

FРАСПОБР (α;p;n-p-1)

  • α – вероятность, связанная с данным распределением;
  • p и n – числитель и знаменатель степеней свободы, соответственно.

Зная, что α = 0,05, p = 2 и n = 53, получаем следующее значение для F крит (см. рисунок 2).

Рисунок 2 – Пример расчетов.

Таким образом можно сказать, что F расч > F крит. В итоге принимается гипотеза Н 1 о статистической значимости коэффициента детерминации.

Квантили стандартного нормального распределения

Необходимость в вычислении квантилей стандартного нормального распределения возникает при проверке статистических гипотез и при построении доверительных интервалов.

Примечание : Про проверку статистических гипотез см. статью Проверка статистических гипотез в MS EXCEL . Про построение доверительных интервалов см. статью Доверительные интервалы в MS EXCEL .

В данных задачах часто используется специальная терминология:

  • Нижний квантиль уровняальфа ( α percentage point) ;
  • Верхний квантиль уровня альфа (upper α percentage point) ;
  • Двусторонние квантили уровняальфа .

Нижний квантиль уровня альфа — это обычный α-квантиль. Чтобы пояснить название « нижний» квантиль , построим график плотности вероятности и функцию вероятности стандартного нормального распределения (см. файл примера лист Квантили ).

Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение меньше α-квантиля . Из определения квантиля эта вероятность равна α . Из графика функции распределения становится понятно, откуда происходит название » нижний квантиль» — выделенная область расположена в нижней части графика.

Для α=0,05, нижний 0,05-квантиль стандартного нормального распределения равен -1,645. Вычисления в MS EXCEL можно сделать по формуле:

Однако, при проверке гипотез и построении доверительных интервалов чаще используется «верхний» α-квантиль. Покажем почему.

Верхним α — квантилем называют такое значение x α , для которого вероятность, того что случайная величина X примет значение больше или равное x α равна альфа: P(X>= x α )= α . Из определения понятно, что верхний альфа — квантиль любого распределения равен нижнему (1- α) — квантилю. А для распределений, у которых функция плотности распределения является четной функцией, верхний α — квантиль равен нижнему α — квантилю со знаком минус . Это следует из свойства четной функции f(-x)=f(x), в силу симметричности ее относительно оси ординат.

Действительно, для α=0,05, верхний 0,05-квантиль стандартного нормального распределения равен 1,645. Т.к. функция плотности вероятности стандартного нормального распределения является четной функцией, то вычисления в MS EXCEL верхнего квантиля можно сделать по двум формулам:

Чтобы пояснить название « верхний» квантиль , построим график плотности вероятности и функцию вероятности стандартного нормального распределения для α=0,05.

Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение больше верхнего 0,05-квантиля , т.е. больше значения 1,645. Эта вероятность равна 0,05.

На графике плотности вероятности площадь выделенной области равна 0,05 (5%) от общей площади под графиком (равна 1). Из графика функции распределения становится понятно, откуда происходит название «верхний» квантиль — выделенная область расположена в верхней части графика. Если Z больше верхнего квантиля , т.е. попадает в выделенную область, то нулевая гипотеза отклоняется.

Также при проверке двухсторонних гипотез и построении соответствующих доверительных интервалов иногда используется понятие «двусторонний» α-квантиль. В этом случае условие отклонения нулевой гипотезы звучит как |Z |>Z α /2 , где Z α /2 – верхний α/2-квантиль . Чтобы не писать верхний α/2-квантиль , для удобства используют «двусторонний» α-квантиль. Почему двусторонний? Как и в предыдущих случаях, построим график плотности вероятности стандартного нормального распределения и график функции распределения .

Невыделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение между нижним квантилем уровня α /2 и верхним квантилем уровня α /2, т.е. будет между значениями -1,960 и 1,960 при α=0,05. Эта вероятность равна в нашем случае 1-(0,05/2+0,05/2)=0,95. Если Z попадает в одну из выделенных областей, то нулевая гипотеза отклоняется.

Вычислить двусторонний 0,05 — квантиль это можно с помощью формул MS EXCEL: =НОРМ.СТ.ОБР(1-0,05/2) или =-НОРМ.СТ.ОБР(0,05/2)

Другими словами, двусторонние α-квантили задают интервал, в который рассматриваемая случайная величина попадает с заданной вероятностью α.

Выборочное среднее

Среднее выборки или выборочное среднее (sample average, mean) представляет собой среднее арифметическое всех значений выборки.

В MS EXCEL для вычисления среднего выборки можно использовать функцию СРЗНАЧ() . В качестве аргументов функции нужно указать ссылку на диапазон, содержащий значения выборки.

Выборочное среднее является «хорошей» (несмещенной и эффективной) точечной оценкой математического ожидания случайной величины (см. ниже), т.е. среднего значения исходного распределения, из которого взята выборка.

Примечание: О вычислении доверительных интервалов при оценке математического ожидания можно прочитать, например, в статье Доверительный интервал для оценки среднего (дисперсия известна) в MS EXCEL.

  • Если к каждому из значений xi прибавить одну и туже константу с, то среднее арифметическое увеличится на такую же константу;
  • Если каждое из значений xi умножить на одну и туже константу с, то среднее арифметическое умножится на такую же константу.

Генерация случайного процесса равномерного и нормального распределения в Excel: Методическое указание к выполнению контрольной работы
2) Так как функция математического ожидания это т оже самое, что и функция среднего арифметического, то: в пустой ячейке вводим «=», далее нажимаем fx, выбираем функцию СРЗНАЧ, выделяем числовые данные нашей исходной таблицы.

-Критерий стьюдента для уравнения множественной регрессии.

Частный
-критерий
оценивает значимость коэффициентов
чистой регрессии. Зная величину,
можно определить и-критерий
для коэффициента регрессии при-м
факторе,,
а именно:

.
(2.24)

Оценка значимости коэффициентов чистой
регрессии по
-критерию
Стьюдента может быть проведена и без
расчета частных-критериев.
В этом случае, как и в парной регрессии,
для каждого фактора используется
формула:

,
(2.25)

где
– коэффициент чистой регрессии при
факторе,– средняя квадратическая (стандартная)
ошибка коэффициента регрессии.

Для уравнения множественной регрессии
средняя квадратическая ошибка коэффициента
регрессии может быть определена по
следующей формуле:

,
(2.26)

где
,– среднее квадратическое отклонение
для признака,– коэффициент детерминации для
уравнения множественной регрессии,– коэффициент детерминации для
зависимости факторасо всеми другими факторами уравнения
множественной регрессии;– число степеней свободы для остаточной
суммы квадратов отклонений.

Как видим, чтобы воспользоваться данной
формулой, необходимы матрица межфакторной
корреляции и расчет по ней соответствующих
коэффициентов детерминации
.
Так, для уравненияоценка значимости коэффициентов
регрессии,,предполагает расчет трех межфакторных
коэффициентов детерминации:,,.

Взаимосвязь показателей частного
коэффициента корреляции, частного
-критерия
и-критерия
Стьюдента для коэффициентов чистой
регрессии может использоваться в
процедуре отбора факторов. Отсев факторов
при построении уравнения регрессии
методом исключения практически можно
осуществлять не только по частным
коэффициентам корреляции, исключая на
каждом шаге фактор с наименьшим незначимым
значением частного коэффициента
корреляции, но и по величинами.
Частный-критерий
широко используется и при построении
модели методом включения переменных и
шаговым регрессионным методом.

На данном примере рассмотрим, как оценивается надежность полученного уравнение регрессии. Этот же тест используется для проверки гипотезы о том, что коэффициенты регрессии одновременно равны нулю, a=0 , b=0 . Другими словами, суть расчетов — ответить на вопрос: можно ли его использовать для дальнейшего анализа и прогнозов?

Для установления сходства или различия дисперсий в двух выборках используйте данный t-критерий .

Итак, целью анализа является получение некоторой оценки, с помощью которой можно было бы утверждать, что при некотором уровне α полученное уравнение регрессии — статистически надежно. Для этого используется коэффициент детерминации R 2
.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k 1 =(m) и k 2 =(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3

Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2 (или через функцию Excel FРАСПОБР(вероятность;1;n-2)).
F табл — это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α — вероятность отвергнуть правильную гипотезу при условии, что она верна

Обычно α принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k 1 =1 и k 2 =48, F табл = 4

Выводы
: Поскольку фактическое значение F > F табл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна
)
.

Показатели качества уравнения регрессии

Показатель Значение
Коэффициент детерминации 0.49
Средний коэффициент эластичности 0.51
Средняя ошибка аппроксимации 10.89

Пример. По совокупности 25 предприятий торговли изучается зависимость между признаками: X — цена на товар А, тыс. руб.; Y — прибыль торгового предприятия, млн. руб. При оценке регрессионной модели были получены следующие промежуточные результаты: ∑(yi-yx)2 = 46000; ∑(yi-yср)2 = 138000. Какой показатель корреляции можно определить по этим данным? Рассчитайте величину этого показателя, на основе этого результата и с помощью F-критерия Фишера сделайте вывод о качестве модели регрессии. Решение. По этим данным можно определить эмпирическое корреляционное отношение: , где ∑(yср-yx)2 = ∑(yi-yср)2 – ∑(yi-yx)2 = 138000 – 46000 = 92 000. η2 = 92 000/138000 = 0.67, η = 0.816 (0.7 < η < 0.9 – связь между X и Y высокая).

F-критерий Фишера: n = 25, m = 1. R2 = 1 – 46000/138000 = 0.67, F = 0.67/(1-0.67)x(25 – 1 – 1) = 46. Fтабл>(1;>Поскольку фактическое значение F > Fтабл, то найденная оценка уравнения регрессии статистически надежна.

Для чего используется точный критерий Фишера?

Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.

Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.

В каких случаях можно использовать точный критерий Фишера?

  1. Сравниваемые переменные должны быть измерены в номинальной шкале и иметь только два значения, например, артериальное давление в норме или повышено, исход благоприятный или неблагоприятный, послеоперационные осложнения есть или нет.
  2. Критерий подходит для сравнения очень малых выборок: точный критерий Фишера может применяться для анализа четырехпольных таблиц в случае значений ожидаемого явления менее 10, что является ограничением для применения критерия хи-квадрат Пирсона.
  3. Точный критерий Фишера бывает односторонним и двусторонним. При одностороннем варианте точно известно, куда отклонится один из показателей. Например, во время исследования сравнивают, сколько пациентов выздоровело по сравнению с группой контроля. Предполагают, что терапия не может ухудшить состояние пациентов, а только либо вылечить, либо нет.Двусторонний тест является предпочтительным, так как оценивает различия частот по двум направлениям. То есть оценивается верятность как большей, так и меньшей частоты явления в экспериментальной группе по сравнению с контрольной группой.

Аналогом точного критерия Фишера является Критерий хи-квадрат Пирсона, при этом точный критерий Фишера обладает более высокой мощностью, особенно при сравнении малых выборок, в связи с чем в этом случае обладает преимуществом.

Показательный (экспоненциальный) закон распределения

Определение: Непрерывная случайная величина Х имеет показательный (экспоненциальный) закон распределения с параметром λ, если ее плотность вероятности f(x) имеет вид:

Кривая распределения f(x) и график функции распределения F(x) случайной величины Х приведены соответственно на рис. 7.3 и рис. 7.4.

Теорема. Функция распределения случайной величины Х, распределенной по показательному (экспоненциальному) закону, есть ее математическое ожидание а дисперсия

Отсюда следует, что для случайной величины, распределенной по показательному закону, математическое ожидание равно среднему квадратическому отклонению, т.е.

Вероятность попадания в интервал непрерывной случайной величины Х, распределенной по показательному закону, находится как

Пример:

Установлено, что время ремонта железнодорожных вагонов есть случайная величина Х, распределенная по показательному закону. Определить вероятность того, что на ремонт вагона потребуется менее 7 дней, если среднее время ремонта вагонов составляет 10 дней.

Решение:

По условию математическое ожидание М(Х) = 1/λ = 10, откуда параметр λ = 0,1. По формуле (6.17) находим вероятность попадания случайной величины Х в интервал :

Показательный закон распределения играет большую роль в теории массового обслуживания. Так например, интервал времени между двумя соседними событиями в простейшем потоке имеет показательное распределение с параметром λ – интенсивностью потока. Кроме того, показательное распределение широко применяется в теории надежности, одним из основных понятий которой является функция надежности.

Функция надежности

Будем называть элементом некоторое устройство. Пусть элемент начинает работать в момент времени , а по истечении времени τ происходит отказ. Обозначим через Т непрерывную случайную величину – длительность времени безотказной работы элемента. Если элемент проработал безотказно (т.е. до наступления отказа) время, меньшее чем τ, то, следовательно, за время длительностью τ наступил отказ.

Таким образом, интегральная функция определяет вероятность отказа за время длительностью τ. Следовательно, вероятность безотказной работы за это же время, длительностью τ, т.е. вероятность противоположного события Т > τ, равна

Функцией надежности R(τ), называют функцию, определяющую вероятность безотказной работы элемента за время длительностью τ: где λ – интенсивность отказов.

Широкое использование показательного закона распределения обусловлено тем, что только он обладает следующим важным свойством: Если промежуток времени Т, распределенный по показательному закону, уже длился некоторое время τ, то это никак не влияет на закон распределения оставшейся части – τ промежутка, т.е. закон распределения остается таким же, как и всего промежутка Т.

Пример:

Время безотказной работы устройства распределено по показательному законуКакова вероятность того, что устройство проработает безотказно 50 часов?

Решение:

По условию постоянная интенсивность отказов λ = 0,02. Используя формулу (6.18), получаем:

FРАСПОБР (функция FРАСПОБР)

​ раздел «Анализ данных»,​ 23 предприятий о:​расч​10​ с применяемыми функциями​

​799 000 000,00 ₽​ математического описания функции​Знаменатель степеней свободы​ определить критическое значение​Вероятность​0,9729551​ используется для проверки​ вычисления верхнего квантиля.​ правостороннюю вероятность, т.е.​В файле примера на​2​

​Определение​​ где можно произвести​ X — цена​Регрессия​Стандартное отклонение для rxy​ в пакете Excel​85 000 000,00 ₽​ ФИШЕР, имеет вид:​Формула​ F, нужно использовать​ — обязательный аргумент.​Возвращает значение, обратное (правостороннему)​ гипотез с помощью​ Т.е. если в​ P(X>x)). Функция FРАСП()​ листе График приведены​

​), из которых сделаны​: Если U​ математическую статистику. Мне​ на товар А,​

Синтаксис

​=КОРЕНЬ((1-C8^2)/4)​ приведены на рисунке​

​Схема решения таких задач​​Z’=1/2*ln(1+x)/(1-x)​Описание​ уровень значимости как​

​ Вероятность, связанная с​​ F-распределению вероятностей. Если​ коэффициента корреляции.​

​ качестве аргумента функции​​ оставлена в MS​ графики плотности распределения​

Замечания

​ выборки размером n​1​ нужно расчитать критерий​ тыс. руб.; Y​

​227,407​Таким образом, с вероятностью​ 1.​

​ выглядит следующим образом:​Рассмотрим применение данной функции​Результат​ аргумент «вероятность» функции​

​ интегральным F-распределением.​ p = FРАСП(x;. ),​ФИШЕР(x)​ указан уровень значимости,​ EXCEL 2010 для​

​ вероятности и интегральной​1​и U​ Фишера. Его можно​ — прибыль торгового​

​7,075​ 0,95 линейный коэффициент​Рисунок 1 – Пример​Рассчитывается линейный коэффициент корреляции​ на 3-x конкретных​=FРАСПОБР(A2;A3;A4)​ FРАСПОБР.​Степени_свободы1​ то FРАСПОБР(p;. ) =​Аргументы функции ФИШЕР описаны​ например 0,05, то​ совместимости. Аналогом FРАСП()​ функции распределения.​и n​

​2​ вычислить двумя способами.​ предприятия, млн. руб,​Остаток​ корреляции заключен в​ расчетов.​ r​ примерах.​Значение, обратное F-распределению вероятностей​По заданному значению вероятности​ — обязательный аргумент.​ x.​ ниже.​ функция вернет такое​

Пример

​ является функция F.РАСП.ПХ(),​Примечание​2​независимые случайные величины,​ Есть раздел «Регрессия»​ производится изучение их​1607,014​ интервале от (–0,386)​№ п/п​xy​​ для приведенных выше​ функция FРАСПОБР ищет​

​ Числитель степеней свободы.​

​F-распределение может использоваться в​

​ значение случайной величины​ появившаяся в MS​

​ имеющие ХИ2-распределение с​

​ и «Однофакторный дисперсионный​

​ зависимости. Оценка регрессионной​

​;​Пример 1. Используя данные​ данных​

Распределение Гаусса

Нормальное распределение получило своё название абсолютно справедливо: по статистике, большинство событий происходят именно с вероятностью нормального распределения, но что это значит? Это означает, например, что когда Вы видите на упаковке хлеба обозначение “Вес: 400±16г” – вес батона имеет нормальное распределение со средним значением 400г и стандартным отклонением 16г.

Таблица нормального распределения

Таблица нормального распределения – это затабулированные значения функции нормального распределения.

Для нахождения вероятности события Z можно воспользоваться таблицей нормального распределения ниже. На пересечении строк (n) и столбцов (m) находится значение вероятности n+m.

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Таблица нормального распределения. Красным выделены часто используемые значения при выборе критической области
0.500 0.504 0.508 0.512 0.516 0.520 0.524 0.528 0.532 0.536
0.1 0.540 0.544 0.548 0.552 0.556 0.560 0.564 0.568 0.571 0.575
0.2 0.579 0.583 0.587 0.591 0.595 0.599 0.603 0.606 0.610 0.614
0.3 0.618 0.622 0.625 0.629 0.633 0.637 0.641 0.644 0.648 0.652
0.4 0.655 0.659 0.663 0.666 0.670 0.674 0.677 0.681 0.684 0.688
0.5 0.692 0.695 0.699 0.702 0.705 0.709 0.712 0.716 0.719 0.722
0.6 0.726 0.729 0.732 0.736 0.739 0.742 0.745 0.749 0.752 0.755
0.7 0.758 0.761 0.764 0.767 0.770 0.773 0.776 0.779 0.782 0.785
0.8 0.788 0.791 0.794 0.797 0.799 0.802 0.805 0.808 0.811 0.813
0.9 0.816 0.819 0.821 0.824 0.826 0.829 0.832 0.834 0.837 0.839
1 0.841 0.844 0.846 0.849 0.851 0.853 0.855 0.858 0.860 0.862
1.1 0.864 0.867 0.869 0.871 0.873 0.875 0.877 0.879 0.881 0.883
1.2 0.885 0.887 0.889 0.891 0.892 0.894 0.896 0.898 0.900 0.901
1.3 0.903 0.905 0.907 0.908 0.910 0.911 0.913 0.915 0.916 0.918
1.4 0.919 0.921 0.922 0.924 0.925 0.926 0.928 0.929 0.931 0.932
1.5 0.933 0.934 0.936 0.937 0.938 0.939 0.941 0.942 0.943 0.944
1.6 0.945 0.946 0.947 0.948 0.950 0.951 0.952 0.953 0.954 0.955
1.7 0.955 0.956 0.957 0.958 0.959 0.960 0.961 0.962 0.963 0.963
1.8 0.964 0.965 0.966 0.966 0.967 0.968 0.969 0.969 0.970 0.971
1.9 0.971 0.972 0.973 0.973 0.974 0.974 0.975 0.976 0.976 0.977
2 0.977 0.978 0.978 0.979 0.979 0.980 0.980 0.981 0.981 0.982
2.1 0.982 0.983 0.983 0.983 0.984 0.984 0.985 0.985 0.985 0.986
2.2 0.986 0.986 0.987 0.987 0.988 0.988 0.988 0.988 0.989 0.989
2.3 0.989 0.990 0.990 0.990 0.990 0.991 0.991 0.991 0.991 0.992
2.4 0.992 0.992 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.994
2.5 0.994 0.994 0.994 0.994 0.995 0.995 0.995 0.995 0.995 0.995
2.6 0.995 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996 0.996
2.7 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997
2.8 0.997 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998
2.9 0.998 0.998 0.998 0.998 0.998 0.998 0.999 0.999 0.999 0.999
3 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.1 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999
3.2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000
Понравилась статья? Поделиться с друзьями:
Самоучитель Брин Гвелл
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: