Шаг № 8: Измените тип диаграммы для серии этикеток.
Наш следующий шаг — изменить тип диаграммы недавно добавленной серии, чтобы маркеры данных отображались в виде точек. Для этого щелкните правой кнопкой мыши график диаграммы и выберите «Изменить тип диаграммы.”
Затем создайте комбинированную диаграмму:
- Перейдите к Комбо таб.
- Для Серия «Series2», изменение «Тип диаграммы» к «Разброс.
Примечание. Убедитесь, что «Серия1»Остается как«Скаттер с плавными линиями. » Иногда Excel изменяет его, когда вы делаете Комбо Также убедитесь, что «Серия1”Не перемещается на вторичную ось — флажок рядом с типом диаграммы не должен быть отмечен.
”
- Нажмите «Ok.”
Проверка статистической значимости регрессии по функции FРАСПОБР
Пример 2.
Произвести проверку статистической значимости уравнения множественной регрессии с помощью F-критерия Фишера, сделать выводы.
Для проверки значимости уравнения в целом выдвинем гипотезу Н 0 о статистической незначимости коэффициента детерминации и противоположную ей гипотезу Н 1 о статистической значимости коэффициента детерминации:
Н 1: R 2 ≠ 0.
Проверим гипотезы с помощью F-критерия Фишера. Показатели приведены в таблице 2.
Таблица 2 – Исходные данные
Для этого используем в пакете Excel функцию:
FРАСПОБР (α;p;n-p-1)
- α – вероятность, связанная с данным распределением;
- p и n – числитель и знаменатель степеней свободы, соответственно.
Зная, что α = 0,05, p = 2 и n = 53, получаем следующее значение для F крит (см. рисунок 2).
Рисунок 2 – Пример расчетов.
Таким образом можно сказать, что F расч > F крит. В итоге принимается гипотеза Н 1 о статистической значимости коэффициента детерминации.
Квантили стандартного нормального распределения
Необходимость в вычислении квантилей стандартного нормального распределения возникает при проверке статистических гипотез и при построении доверительных интервалов.
Примечание : Про проверку статистических гипотез см. статью Проверка статистических гипотез в MS EXCEL . Про построение доверительных интервалов см. статью Доверительные интервалы в MS EXCEL .
В данных задачах часто используется специальная терминология:
- Нижний квантиль уровняальфа ( α percentage point) ;
- Верхний квантиль уровня альфа (upper α percentage point) ;
- Двусторонние квантили уровняальфа .
Нижний квантиль уровня альфа — это обычный α-квантиль. Чтобы пояснить название « нижний» квантиль , построим график плотности вероятности и функцию вероятности стандартного нормального распределения (см. файл примера лист Квантили ).
Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение меньше α-квантиля . Из определения квантиля эта вероятность равна α . Из графика функции распределения становится понятно, откуда происходит название » нижний квантиль» — выделенная область расположена в нижней части графика.
Для α=0,05, нижний 0,05-квантиль стандартного нормального распределения равен -1,645. Вычисления в MS EXCEL можно сделать по формуле:
Однако, при проверке гипотез и построении доверительных интервалов чаще используется «верхний» α-квантиль. Покажем почему.
Верхним α — квантилем называют такое значение x α , для которого вероятность, того что случайная величина X примет значение больше или равное x α равна альфа: P(X>= x α )= α . Из определения понятно, что верхний альфа — квантиль любого распределения равен нижнему (1- α) — квантилю. А для распределений, у которых функция плотности распределения является четной функцией, верхний α — квантиль равен нижнему α — квантилю со знаком минус . Это следует из свойства четной функции f(-x)=f(x), в силу симметричности ее относительно оси ординат.
Действительно, для α=0,05, верхний 0,05-квантиль стандартного нормального распределения равен 1,645. Т.к. функция плотности вероятности стандартного нормального распределения является четной функцией, то вычисления в MS EXCEL верхнего квантиля можно сделать по двум формулам:
Чтобы пояснить название « верхний» квантиль , построим график плотности вероятности и функцию вероятности стандартного нормального распределения для α=0,05.
Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение больше верхнего 0,05-квантиля , т.е. больше значения 1,645. Эта вероятность равна 0,05.
На графике плотности вероятности площадь выделенной области равна 0,05 (5%) от общей площади под графиком (равна 1). Из графика функции распределения становится понятно, откуда происходит название «верхний» квантиль — выделенная область расположена в верхней части графика. Если Z больше верхнего квантиля , т.е. попадает в выделенную область, то нулевая гипотеза отклоняется.
Также при проверке двухсторонних гипотез и построении соответствующих доверительных интервалов иногда используется понятие «двусторонний» α-квантиль. В этом случае условие отклонения нулевой гипотезы звучит как |Z |>Z α /2 , где Z α /2 – верхний α/2-квантиль . Чтобы не писать верхний α/2-квантиль , для удобства используют «двусторонний» α-квантиль. Почему двусторонний? Как и в предыдущих случаях, построим график плотности вероятности стандартного нормального распределения и график функции распределения .
Невыделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение между нижним квантилем уровня α /2 и верхним квантилем уровня α /2, т.е. будет между значениями -1,960 и 1,960 при α=0,05. Эта вероятность равна в нашем случае 1-(0,05/2+0,05/2)=0,95. Если Z попадает в одну из выделенных областей, то нулевая гипотеза отклоняется.
Вычислить двусторонний 0,05 — квантиль это можно с помощью формул MS EXCEL: =НОРМ.СТ.ОБР(1-0,05/2) или =-НОРМ.СТ.ОБР(0,05/2)
Другими словами, двусторонние α-квантили задают интервал, в который рассматриваемая случайная величина попадает с заданной вероятностью α.
Выборочное среднее
Среднее выборки или выборочное среднее (sample average, mean) представляет собой среднее арифметическое всех значений выборки.
В MS EXCEL для вычисления среднего выборки можно использовать функцию СРЗНАЧ() . В качестве аргументов функции нужно указать ссылку на диапазон, содержащий значения выборки.
Выборочное среднее является «хорошей» (несмещенной и эффективной) точечной оценкой математического ожидания случайной величины (см. ниже), т.е. среднего значения исходного распределения, из которого взята выборка.
Примечание: О вычислении доверительных интервалов при оценке математического ожидания можно прочитать, например, в статье Доверительный интервал для оценки среднего (дисперсия известна) в MS EXCEL.
- Если к каждому из значений xi прибавить одну и туже константу с, то среднее арифметическое увеличится на такую же константу;
- Если каждое из значений xi умножить на одну и туже константу с, то среднее арифметическое умножится на такую же константу.
Генерация случайного процесса равномерного и нормального распределения в Excel: Методическое указание к выполнению контрольной работы
2) Так как функция математического ожидания это т оже самое, что и функция среднего арифметического, то: в пустой ячейке вводим «=», далее нажимаем fx, выбираем функцию СРЗНАЧ, выделяем числовые данные нашей исходной таблицы.
-Критерий стьюдента для уравнения множественной регрессии.
Частный
-критерий
оценивает значимость коэффициентов
чистой регрессии. Зная величину,
можно определить и-критерий
для коэффициента регрессии при-м
факторе,,
а именно:
.
(2.24)
Оценка значимости коэффициентов чистой
регрессии по
-критерию
Стьюдента может быть проведена и без
расчета частных-критериев.
В этом случае, как и в парной регрессии,
для каждого фактора используется
формула:
,
(2.25)
где
– коэффициент чистой регрессии при
факторе,– средняя квадратическая (стандартная)
ошибка коэффициента регрессии.
Для уравнения множественной регрессии
средняя квадратическая ошибка коэффициента
регрессии может быть определена по
следующей формуле:
,
(2.26)
где
,– среднее квадратическое отклонение
для признака,– коэффициент детерминации для
уравнения множественной регрессии,– коэффициент детерминации для
зависимости факторасо всеми другими факторами уравнения
множественной регрессии;– число степеней свободы для остаточной
суммы квадратов отклонений.
Как видим, чтобы воспользоваться данной
формулой, необходимы матрица межфакторной
корреляции и расчет по ней соответствующих
коэффициентов детерминации
.
Так, для уравненияоценка значимости коэффициентов
регрессии,,предполагает расчет трех межфакторных
коэффициентов детерминации:,,.
Взаимосвязь показателей частного
коэффициента корреляции, частного
-критерия
и-критерия
Стьюдента для коэффициентов чистой
регрессии может использоваться в
процедуре отбора факторов. Отсев факторов
при построении уравнения регрессии
методом исключения практически можно
осуществлять не только по частным
коэффициентам корреляции, исключая на
каждом шаге фактор с наименьшим незначимым
значением частного коэффициента
корреляции, но и по величинами.
Частный-критерий
широко используется и при построении
модели методом включения переменных и
шаговым регрессионным методом.
На данном примере рассмотрим, как оценивается надежность полученного уравнение регрессии. Этот же тест используется для проверки гипотезы о том, что коэффициенты регрессии одновременно равны нулю, a=0 , b=0 . Другими словами, суть расчетов — ответить на вопрос: можно ли его использовать для дальнейшего анализа и прогнозов?
Для установления сходства или различия дисперсий в двух выборках используйте данный t-критерий .
Итак, целью анализа является получение некоторой оценки, с помощью которой можно было бы утверждать, что при некотором уровне α полученное уравнение регрессии — статистически надежно. Для этого используется коэффициент детерминации R 2
.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с k 1 =(m) и k 2 =(n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.
где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H 0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:
где m=1 для парной регрессии.
3
Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2 (или через функцию Excel FРАСПОБР(вероятность;1;n-2)).
F табл — это максимально возможное значение критерия под влиянием случайных факторов при данных степенях свободы и уровне значимости α. Уровень значимости α — вероятность отвергнуть правильную гипотезу при условии, что она верна
Обычно α принимается равной 0,05 или 0,01.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k 1 =1 и k 2 =48, F табл = 4
Выводы
: Поскольку фактическое значение F > F табл, то коэффициент детерминации статистически значим (найденная оценка уравнения регрессии статистически надежна
)
.
Показатели качества уравнения регрессии
Показатель | Значение |
Коэффициент детерминации | 0.49 |
Средний коэффициент эластичности | 0.51 |
Средняя ошибка аппроксимации | 10.89 |
Пример. По совокупности 25 предприятий торговли изучается зависимость между признаками: X — цена на товар А, тыс. руб.; Y — прибыль торгового предприятия, млн. руб. При оценке регрессионной модели были получены следующие промежуточные результаты: ∑(yi-yx)2 = 46000; ∑(yi-yср)2 = 138000. Какой показатель корреляции можно определить по этим данным? Рассчитайте величину этого показателя, на основе этого результата и с помощью F-критерия Фишера сделайте вывод о качестве модели регрессии. Решение. По этим данным можно определить эмпирическое корреляционное отношение: , где ∑(yср-yx)2 = ∑(yi-yср)2 – ∑(yi-yx)2 = 138000 – 46000 = 92 000. η2 = 92 000/138000 = 0.67, η = 0.816 (0.7 < η < 0.9 – связь между X и Y высокая).
F-критерий Фишера: n = 25, m = 1. R2 = 1 – 46000/138000 = 0.67, F = 0.67/(1-0.67)x(25 – 1 – 1) = 46. Fтабл>(1;>Поскольку фактическое значение F > Fтабл, то найденная оценка уравнения регрессии статистически надежна.
Для чего используется точный критерий Фишера?
Точный критерий Фишера в основном применяется для сравнения малых выборок. Этому есть две весомые причины. Во-первых, вычисления критерия довольно громоздки и могут занимать много времени или требовать мощных вычислительных ресурсов. Во-вторых, критерий довольно точен (что нашло отражение даже в его названии), что позволяет его использовать в исследованиях с небольшим числом наблюдений.
Особое место отводится точному критерию Фишера в медицине. Это важный метод обработки медицинских данных, нашедший свое применение во многих научных исследованиях. Благодаря ему можно исследовать взаимосвязь определенных фактора и исхода, сравнивать частоту патологических состояний между разными группами пациентов и т.д.
В каких случаях можно использовать точный критерий Фишера?
- Сравниваемые переменные должны быть измерены в номинальной шкале и иметь только два значения, например, артериальное давление в норме или повышено, исход благоприятный или неблагоприятный, послеоперационные осложнения есть или нет.
- Критерий подходит для сравнения очень малых выборок: точный критерий Фишера может применяться для анализа четырехпольных таблиц в случае значений ожидаемого явления менее 10, что является ограничением для применения критерия хи-квадрат Пирсона.
- Точный критерий Фишера бывает односторонним и двусторонним. При одностороннем варианте точно известно, куда отклонится один из показателей. Например, во время исследования сравнивают, сколько пациентов выздоровело по сравнению с группой контроля. Предполагают, что терапия не может ухудшить состояние пациентов, а только либо вылечить, либо нет.Двусторонний тест является предпочтительным, так как оценивает различия частот по двум направлениям. То есть оценивается верятность как большей, так и меньшей частоты явления в экспериментальной группе по сравнению с контрольной группой.
Аналогом точного критерия Фишера является Критерий хи-квадрат Пирсона, при этом точный критерий Фишера обладает более высокой мощностью, особенно при сравнении малых выборок, в связи с чем в этом случае обладает преимуществом.
Показательный (экспоненциальный) закон распределения
Определение: Непрерывная случайная величина Х имеет показательный (экспоненциальный) закон распределения с параметром λ, если ее плотность вероятности f(x) имеет вид:
Кривая распределения f(x) и график функции распределения F(x) случайной величины Х приведены соответственно на рис. 7.3 и рис. 7.4.
Теорема. Функция распределения случайной величины Х, распределенной по показательному (экспоненциальному) закону, есть ее математическое ожидание а дисперсия
Отсюда следует, что для случайной величины, распределенной по показательному закону, математическое ожидание равно среднему квадратическому отклонению, т.е.
Вероятность попадания в интервал непрерывной случайной величины Х, распределенной по показательному закону, находится как
Пример:
Установлено, что время ремонта железнодорожных вагонов есть случайная величина Х, распределенная по показательному закону. Определить вероятность того, что на ремонт вагона потребуется менее 7 дней, если среднее время ремонта вагонов составляет 10 дней.
Решение:
По условию математическое ожидание М(Х) = 1/λ = 10, откуда параметр λ = 0,1. По формуле (6.17) находим вероятность попадания случайной величины Х в интервал :
Показательный закон распределения играет большую роль в теории массового обслуживания. Так например, интервал времени между двумя соседними событиями в простейшем потоке имеет показательное распределение с параметром λ – интенсивностью потока. Кроме того, показательное распределение широко применяется в теории надежности, одним из основных понятий которой является функция надежности.
Функция надежности
Будем называть элементом некоторое устройство. Пусть элемент начинает работать в момент времени , а по истечении времени τ происходит отказ. Обозначим через Т непрерывную случайную величину – длительность времени безотказной работы элемента. Если элемент проработал безотказно (т.е. до наступления отказа) время, меньшее чем τ, то, следовательно, за время длительностью τ наступил отказ.
Таким образом, интегральная функция определяет вероятность отказа за время длительностью τ. Следовательно, вероятность безотказной работы за это же время, длительностью τ, т.е. вероятность противоположного события Т > τ, равна
Функцией надежности R(τ), называют функцию, определяющую вероятность безотказной работы элемента за время длительностью τ: где λ – интенсивность отказов.
Широкое использование показательного закона распределения обусловлено тем, что только он обладает следующим важным свойством: Если промежуток времени Т, распределенный по показательному закону, уже длился некоторое время τ, то это никак не влияет на закон распределения оставшейся части – τ промежутка, т.е. закон распределения остается таким же, как и всего промежутка Т.
Пример:
Время безотказной работы устройства распределено по показательному законуКакова вероятность того, что устройство проработает безотказно 50 часов?
Решение:
По условию постоянная интенсивность отказов λ = 0,02. Используя формулу (6.18), получаем:
FРАСПОБР (функция FРАСПОБР)
раздел «Анализ данных», 23 предприятий о:расч10 с применяемыми функциями
799 000 000,00 ₽ математического описания функцииЗнаменатель степеней свободы определить критическое значениеВероятность0,9729551 используется для проверки вычисления верхнего квантиля. правостороннюю вероятность, т.е.В файле примера на2
Определение где можно произвести X — ценаРегрессияСтандартное отклонение для rxy в пакете Excel85 000 000,00 ₽ ФИШЕР, имеет вид:Формула F, нужно использовать — обязательный аргумент.Возвращает значение, обратное (правостороннему) гипотез с помощью Т.е. если в P(X>x)). Функция FРАСП() листе График приведены
), из которых сделаны: Если U математическую статистику. Мне на товар А,
Синтаксис
=КОРЕНЬ((1-C8^2)/4) приведены на рисунке
Схема решения таких задачZ’=1/2*ln(1+x)/(1-x)Описание уровень значимости как
Вероятность, связанная с F-распределению вероятностей. Если коэффициента корреляции.
качестве аргумента функции оставлена в MS графики плотности распределения
Замечания
выборки размером n1 нужно расчитать критерий тыс. руб.; Y
227,407Таким образом, с вероятностью 1.
выглядит следующим образом:Рассмотрим применение данной функцииРезультат аргумент «вероятность» функции
интегральным F-распределением. p = FРАСП(x;. ),ФИШЕР(x) указан уровень значимости, EXCEL 2010 для
вероятности и интегральной1и U Фишера. Его можно — прибыль торгового
7,075 0,95 линейный коэффициентРисунок 1 – ПримерРассчитывается линейный коэффициент корреляции на 3-x конкретных=FРАСПОБР(A2;A3;A4) FРАСПОБР.Степени_свободы1 то FРАСПОБР(p;. ) =Аргументы функции ФИШЕР описаны например 0,05, то совместимости. Аналогом FРАСП() функции распределения.и n
2 вычислить двумя способами. предприятия, млн. руб,Остаток корреляции заключен в расчетов. r примерах.Значение, обратное F-распределению вероятностейПо заданному значению вероятности — обязательный аргумент. x. ниже. функция вернет такое
Пример
является функция F.РАСП.ПХ(),Примечание2независимые случайные величины, Есть раздел «Регрессия» производится изучение их1607,014 интервале от (–0,386)№ п/пxy для приведенных выше функция FРАСПОБР ищет
Числитель степеней свободы.
F-распределение может использоваться в
значение случайной величины появившаяся в MS
имеющие ХИ2-распределение с
и «Однофакторный дисперсионный
зависимости. Оценка регрессионной
;Пример 1. Используя данные данных
Распределение Гаусса
Нормальное распределение получило своё название абсолютно справедливо: по статистике, большинство событий происходят именно с вероятностью нормального распределения, но что это значит? Это означает, например, что когда Вы видите на упаковке хлеба обозначение “Вес: 400±16г” – вес батона имеет нормальное распределение со средним значением 400г и стандартным отклонением 16г.
Таблица нормального распределения
Таблица нормального распределения – это затабулированные значения функции нормального распределения.
Для нахождения вероятности события Z можно воспользоваться таблицей нормального распределения ниже. На пересечении строк (n) и столбцов (m) находится значение вероятности n+m.
Z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
Таблица нормального распределения. Красным выделены часто используемые значения при выборе критической области | ||||||||||
0.500 | 0.504 | 0.508 | 0.512 | 0.516 | 0.520 | 0.524 | 0.528 | 0.532 | 0.536 | |
0.1 | 0.540 | 0.544 | 0.548 | 0.552 | 0.556 | 0.560 | 0.564 | 0.568 | 0.571 | 0.575 |
0.2 | 0.579 | 0.583 | 0.587 | 0.591 | 0.595 | 0.599 | 0.603 | 0.606 | 0.610 | 0.614 |
0.3 | 0.618 | 0.622 | 0.625 | 0.629 | 0.633 | 0.637 | 0.641 | 0.644 | 0.648 | 0.652 |
0.4 | 0.655 | 0.659 | 0.663 | 0.666 | 0.670 | 0.674 | 0.677 | 0.681 | 0.684 | 0.688 |
0.5 | 0.692 | 0.695 | 0.699 | 0.702 | 0.705 | 0.709 | 0.712 | 0.716 | 0.719 | 0.722 |
0.6 | 0.726 | 0.729 | 0.732 | 0.736 | 0.739 | 0.742 | 0.745 | 0.749 | 0.752 | 0.755 |
0.7 | 0.758 | 0.761 | 0.764 | 0.767 | 0.770 | 0.773 | 0.776 | 0.779 | 0.782 | 0.785 |
0.8 | 0.788 | 0.791 | 0.794 | 0.797 | 0.799 | 0.802 | 0.805 | 0.808 | 0.811 | 0.813 |
0.9 | 0.816 | 0.819 | 0.821 | 0.824 | 0.826 | 0.829 | 0.832 | 0.834 | 0.837 | 0.839 |
1 | 0.841 | 0.844 | 0.846 | 0.849 | 0.851 | 0.853 | 0.855 | 0.858 | 0.860 | 0.862 |
1.1 | 0.864 | 0.867 | 0.869 | 0.871 | 0.873 | 0.875 | 0.877 | 0.879 | 0.881 | 0.883 |
1.2 | 0.885 | 0.887 | 0.889 | 0.891 | 0.892 | 0.894 | 0.896 | 0.898 | 0.900 | 0.901 |
1.3 | 0.903 | 0.905 | 0.907 | 0.908 | 0.910 | 0.911 | 0.913 | 0.915 | 0.916 | 0.918 |
1.4 | 0.919 | 0.921 | 0.922 | 0.924 | 0.925 | 0.926 | 0.928 | 0.929 | 0.931 | 0.932 |
1.5 | 0.933 | 0.934 | 0.936 | 0.937 | 0.938 | 0.939 | 0.941 | 0.942 | 0.943 | 0.944 |
1.6 | 0.945 | 0.946 | 0.947 | 0.948 | 0.950 | 0.951 | 0.952 | 0.953 | 0.954 | 0.955 |
1.7 | 0.955 | 0.956 | 0.957 | 0.958 | 0.959 | 0.960 | 0.961 | 0.962 | 0.963 | 0.963 |
1.8 | 0.964 | 0.965 | 0.966 | 0.966 | 0.967 | 0.968 | 0.969 | 0.969 | 0.970 | 0.971 |
1.9 | 0.971 | 0.972 | 0.973 | 0.973 | 0.974 | 0.974 | 0.975 | 0.976 | 0.976 | 0.977 |
2 | 0.977 | 0.978 | 0.978 | 0.979 | 0.979 | 0.980 | 0.980 | 0.981 | 0.981 | 0.982 |
2.1 | 0.982 | 0.983 | 0.983 | 0.983 | 0.984 | 0.984 | 0.985 | 0.985 | 0.985 | 0.986 |
2.2 | 0.986 | 0.986 | 0.987 | 0.987 | 0.988 | 0.988 | 0.988 | 0.988 | 0.989 | 0.989 |
2.3 | 0.989 | 0.990 | 0.990 | 0.990 | 0.990 | 0.991 | 0.991 | 0.991 | 0.991 | 0.992 |
2.4 | 0.992 | 0.992 | 0.992 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.994 |
2.5 | 0.994 | 0.994 | 0.994 | 0.994 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 |
2.6 | 0.995 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 |
2.7 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
2.8 | 0.997 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 |
2.9 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 |
3 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
3.1 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
3.2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 |