Мат ожидание в экселе
- Идем во вкладку «Анализ данных» и выбираем «Гистограмма».
- Выбираем входной интервал.
- Здесь же предлагается задать интервал карманов, т.е. те диапазоны, в пределах которых будут лежать наши значения. Чем больше значений в интервале — тем выше столбик гистограммы. Если мы оставим поле «Интервалы карманов» пустым, то программа вычислит границы интервалов за нас.
- Если хотим сразу же вывести график,то ставим галочку напротив «Вывод графика».
- Нажимаем «ОК».
- Вот, вроде бы, и все: гистограмма готова. Теперь нужно сделать так, чтобы по вертикальной оси отображалась не абсолютная частота, а относительная.
- Под появившейся таблицей со столбцами «Карман» и «Частота» под столбцом «Частота» введем формулу «=СУММ» и сложим все абсолютные частоты.
- К появившейся таблице со столбцами «Карман» и «Частота» добавим еще один столбец и назовем его «Относительная частота».
- Во всех ячейках нового столбца введем формулу, которая будет рассчитывать относительную частоту: 100 умножить на абсолютную частоту (ячейка из столбца «частота») и разделить на сумму, которую мы вычислил в п. 7.
Пример 5. Определить с точностью до двух знаков после запятой вероятность попадания при стрельбе в полосу шириной 3,5 м, если ошибки стрельбы подчиняются нормальному закону распределения со средним значением 0 и σ = 1,9 .
Геометрическое распределение в MS EXCEL
В MS EXCEL, начиная с версии 2010, для Отрицательного
Биномиального распределения
имеется функция ОТРБИНОМ.РАСП()
, английское название NEGBINOM.DIST(), которая позволяет вычислить вероятность возникновения количества неудач
до получения заданного числа успеха при заданной вероятности успеха.
Для Геометрического распределения
второй аргумент этой функции должен быть 1, т.к. нас интересует только первый успех.
Это определение несколько отличается от формулировки приведенной выше, где вычисляется вероятность, что первый успех произойдет после x
испытаний
. Различие сводится к диапазону изменения диапазона x
: если вероятность определена через количество испытаний, то х
может принимать значения начиная с 1, а если через количество неудач, то – начиная с 0. Поэтому справедлива формула: p(x_неудач
)= p(x_испытаний
-1). См. файл примера лист Пример
, где приведено 2 способа расчета.
Ниже используется подход, принятый в функции MS EXCEL: через количество неудач.
Чтобы вычислить функцию плотности вероятности
p(x), см. формулу выше, необходимо установить четвертый аргумент в функции ОТРБИНОМ.РАСП()
равным ЛОЖЬ. Для вычисления , необходимо установить четвертый аргумент равным ИСТИНА.
Примечание
До MS EXCEL 2010 в EXCEL была функция ОТРБИНОМРАСП()
, которая позволяет вычислить только плотность вероятности
. В файле примера
приведена формула на основе функции ОТРБИНОМРАСП()
для вычисления интегральной функции распределения
. Там же приведена формула для вычисления вероятности через определение.
В файле примера
приведены графики плотности распределения вероятности
и интегральной функции распределения
.
Примечание
: Для удобства написания формул для параметра p в файле примера
создано .
Примечание
: В функции ОТРБИНОМ.РАСП()
при нецелом значении х
, . Например, следующие формулы вернут одно и тоже значение: ОТРБИНОМ.РАСП(2
; 1; 0,4; ИСТИНА)= ОТРБИНОМ.РАСП(2,9
; 1; 0,4; ИСТИНА)
Легко создать нормальную диаграмму распределения (кривую колокола) в Excel
В Excel диаграмма колоколообразной кривой, также известная как диаграмма нормального распределения, используется для анализа вероятности каждого события. Обычно вы можете рассчитать среднее значение, стандартное отклонение и нормальное распределение с помощью формул, а затем создать диаграмму колоколообразной кривой на основе вычисленных данных. Здесь с Kutools for Excel, вы можете щелкнуть, чтобы создать стандартную диаграмму нормального распределения в три этапа с применением Нормальное распределение / кривая колокола утилита.
Чтобы быстро создать нормальное распределение или диаграмму колоколообразной кривой в Excel, примените эту функцию, выполнив следующие действия:
1. Нажмите Кутулс > Графики > Распределение данных > Нормальное распределение / кривая колокола. Смотрите скриншот:
2. В выскочившем Быстро создать диаграмму нормального распределения В диалоговом окне выберите тип диаграммы, которую вы хотите создать, а затем выберите диапазон данных, на основе которого вы хотите создать диаграмму, затем максимальное значение, минимальное значение, среднее значение и стандартное отклонение были вычислены и перечислены в диалоговом окне. Смотрите скриншот:
3, Затем нажмите OK кнопка, график нормального распределения или колоколообразной кривой был создан сразу, см. снимок экрана:
Советы:
Если вы отметите График гистограммы частот в Быстро создать диаграмму нормального распределения диалоговом окне, он создаст диаграмму гистограммы, как показано ниже.
В разделе Быстро создать диаграмму нормального распределения диалог, если вы отметите оба График нормального распределения и График гистограммы частот флажки, будет создана комбинированная диаграмма, как показано ниже:
Ноты:
1. Если вы хотите вывести рассчитанные данные, вы можете проверить Выходные данные флажок, то все рассчитанные данные будут выведены в новую книгу.
2. Вы можете нажать на Пример в Быстро создать диаграмму нормального распределения диалоговое окно при первом использовании, и оно создаст новую книгу для отображения образца данных и диаграммы для вас.
Рекомендуемые инструменты для повышения производительностиСледующие ниже инструменты могут значительно сэкономить ваше время и деньги. Какой из них вам подходит?Office Tab: Использование удобных вкладок в вашем офисе, как и в случае Chrome, Firefox и New Internet Explorer.Kutools for Excel: Более 300 дополнительных функций для Excel 2021, 2019, 2016, 2013, 2010, 2007 и Office 365.
Описанный выше функционал — лишь одна из 300 мощных функций Kutools for Excel.
Распределение Гаусса
Нормальное распределение получило своё название абсолютно справедливо: по статистике, большинство событий происходят именно с вероятностью нормального распределения, но что это значит? Это означает, например, что когда Вы видите на упаковке хлеба обозначение “Вес: 400±16г” – вес батона имеет нормальное распределение со средним значением 400г и стандартным отклонением 16г.
Таблица нормального распределения
Таблица нормального распределения – это затабулированные значения функции нормального распределения.
Для нахождения вероятности события Z можно воспользоваться таблицей нормального распределения ниже. На пересечении строк (n) и столбцов (m) находится значение вероятности n+m.
Z | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
Таблица нормального распределения. Красным выделены часто используемые значения при выборе критической области | ||||||||||
0.500 | 0.504 | 0.508 | 0.512 | 0.516 | 0.520 | 0.524 | 0.528 | 0.532 | 0.536 | |
0.1 | 0.540 | 0.544 | 0.548 | 0.552 | 0.556 | 0.560 | 0.564 | 0.568 | 0.571 | 0.575 |
0.2 | 0.579 | 0.583 | 0.587 | 0.591 | 0.595 | 0.599 | 0.603 | 0.606 | 0.610 | 0.614 |
0.3 | 0.618 | 0.622 | 0.625 | 0.629 | 0.633 | 0.637 | 0.641 | 0.644 | 0.648 | 0.652 |
0.4 | 0.655 | 0.659 | 0.663 | 0.666 | 0.670 | 0.674 | 0.677 | 0.681 | 0.684 | 0.688 |
0.5 | 0.692 | 0.695 | 0.699 | 0.702 | 0.705 | 0.709 | 0.712 | 0.716 | 0.719 | 0.722 |
0.6 | 0.726 | 0.729 | 0.732 | 0.736 | 0.739 | 0.742 | 0.745 | 0.749 | 0.752 | 0.755 |
0.7 | 0.758 | 0.761 | 0.764 | 0.767 | 0.770 | 0.773 | 0.776 | 0.779 | 0.782 | 0.785 |
0.8 | 0.788 | 0.791 | 0.794 | 0.797 | 0.799 | 0.802 | 0.805 | 0.808 | 0.811 | 0.813 |
0.9 | 0.816 | 0.819 | 0.821 | 0.824 | 0.826 | 0.829 | 0.832 | 0.834 | 0.837 | 0.839 |
1 | 0.841 | 0.844 | 0.846 | 0.849 | 0.851 | 0.853 | 0.855 | 0.858 | 0.860 | 0.862 |
1.1 | 0.864 | 0.867 | 0.869 | 0.871 | 0.873 | 0.875 | 0.877 | 0.879 | 0.881 | 0.883 |
1.2 | 0.885 | 0.887 | 0.889 | 0.891 | 0.892 | 0.894 | 0.896 | 0.898 | 0.900 | 0.901 |
1.3 | 0.903 | 0.905 | 0.907 | 0.908 | 0.910 | 0.911 | 0.913 | 0.915 | 0.916 | 0.918 |
1.4 | 0.919 | 0.921 | 0.922 | 0.924 | 0.925 | 0.926 | 0.928 | 0.929 | 0.931 | 0.932 |
1.5 | 0.933 | 0.934 | 0.936 | 0.937 | 0.938 | 0.939 | 0.941 | 0.942 | 0.943 | 0.944 |
1.6 | 0.945 | 0.946 | 0.947 | 0.948 | 0.950 | 0.951 | 0.952 | 0.953 | 0.954 | 0.955 |
1.7 | 0.955 | 0.956 | 0.957 | 0.958 | 0.959 | 0.960 | 0.961 | 0.962 | 0.963 | 0.963 |
1.8 | 0.964 | 0.965 | 0.966 | 0.966 | 0.967 | 0.968 | 0.969 | 0.969 | 0.970 | 0.971 |
1.9 | 0.971 | 0.972 | 0.973 | 0.973 | 0.974 | 0.974 | 0.975 | 0.976 | 0.976 | 0.977 |
2 | 0.977 | 0.978 | 0.978 | 0.979 | 0.979 | 0.980 | 0.980 | 0.981 | 0.981 | 0.982 |
2.1 | 0.982 | 0.983 | 0.983 | 0.983 | 0.984 | 0.984 | 0.985 | 0.985 | 0.985 | 0.986 |
2.2 | 0.986 | 0.986 | 0.987 | 0.987 | 0.988 | 0.988 | 0.988 | 0.988 | 0.989 | 0.989 |
2.3 | 0.989 | 0.990 | 0.990 | 0.990 | 0.990 | 0.991 | 0.991 | 0.991 | 0.991 | 0.992 |
2.4 | 0.992 | 0.992 | 0.992 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.994 |
2.5 | 0.994 | 0.994 | 0.994 | 0.994 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 |
2.6 | 0.995 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 |
2.7 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
2.8 | 0.997 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 |
2.9 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 |
3 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
3.1 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
3.2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 |
Шаг № 6: Настройте таблицу меток.
Технически у вас есть кривая колокола. Но его будет трудно прочитать, поскольку в нем отсутствуют какие-либо данные, описывающие это.
Давайте сделаем нормальное распределение более информативным, добавив метки, иллюстрирующие все значения стандартного отклонения ниже и выше среднего (вы также можете использовать их для отображения z-значений).
Для этого создайте еще одну вспомогательную таблицу следующим образом:
Сначала скопируйте среднее значение (F1) рядом с соответствующей ячейкой в столбце X-Value (I5).
Затем вычислите значения стандартного отклонения ниже среднего, введя эту простую формулу в ячейка I4:
1 | = I5- $ F $ 2 |
Проще говоря, формула вычитает сумму предыдущих значений стандартного отклонения из среднего. Теперь перетащите маркер заполнения вверх, чтобы скопировать формулу в оставшиеся две ячейки (I2: I3).
Повторите тот же процесс для стандартных отклонений выше среднего, используя зеркальную формулу:
1 | = I5 + $ F $ 2 |
Таким же образом выполните формулу для двух других ячеек (I7: I8).
Наконец, заполните значения метки оси Y (J2: J8) с нулями, так как вы хотите, чтобы маркеры данных располагались на горизонтальной оси.
Создание массива с нормальным распределением
Итак, чтобы сгенерировать массив данных с нормальным распределением, нам понадобится функция НОРМ.ОБР() – это обратная функция от НОРМ.РАСП(), которая возвращает нормально распределенную переменную для заданной вероятности для определенного среднего значения и стандартного отклонения. Синтаксис формулы выглядит следующим образом:
=НОРМ.ОБР(вероятность; среднее_значение; стандартное_отклонение)
Другими словами, я прошу Excel посчитать, какая переменная будет находится в вероятностном промежутке от 0 до 1. И так как вероятность возникновения продукта с весом в 100 грамм максимальная и будет уменьшаться по мере отдаления от этого значения, то формула будет выдавать значения близких к 100 чаще, чем остальных.
Давайте попробуем разобрать на примере. Выстроим график распределения вероятностей от 0 до 1 с шагом 0,01 для среднего значения равным 100 и стандартным отклонением 1,5.
Как видим из графика точки максимально сконцентрированы у переменной 100 и вероятности 0,5.
Этот фокус мы используем для генерирования случайного массива данных с нормальным распределением. Формула будет выглядеть следующим образом:
=НОРМ.ОБР(СЛЧИС(); среднее_значение; стандартное_отклонение)
Создадим массив данных для нашего примера со средним значением 100 грамм и стандартным отклонением 1,5 грамма и протянем нашу формулу вниз.
Теперь, когда массив данных готов, мы можем выстроить график с нормальным распределением.
Распределение Фишера (F-распределение). Распределения математической статистики в EXCEL
history 12 ноября 2016 г.
Распределения вероятностей
Рассмотрим распределение Фишера (F-распределение). С помощью функции MS EXCEL F .РАСП() построим графики функции распределения и плотности вероятности, поясним применение этого распределения для целей математической статистики.
F-распределение (англ. F-distribution) применяется для целей дисперсионного анализа (ANOVA), при проверке гипотезы о равенстве дисперсий двух нормальных распределений (F-тест) и др.
Определение : Если U 1 и U 2 независимые случайные величины, имеющие ХИ2-распределение с k 1 и k 2степенями свободы соответственно, то распределение случайной величины:
носит название F -распределения с параметрами k 1 и k 2 .
Плотность F -распределения выражается формулой:
где Г(…) – гамма-функция:
если альфа – положительное целое, то Г( альфа )=( альфа -1)!
Приведем пример случайной величины, имеющей F -распределение.
Пусть имеется 2 нормальных распределения N(μ 1 ;σ 1 ) и N(μ 2 ; σ 2 ), из которых сделаны выборки размером n 1 и n 2 . Если s 1 2 и s 2 2 – дисперсии этих выборок , то отношение
имеет F -распределение. Это соотношение нам потребуется при проверке гипотезы о равенстве дисперсий двух нормальных распределений (F-тест) .
Графики функций
В файле примера на листе График приведены графики плотности распределения вероятности и интегральной функции распределения .
Примечание : Для построения функции распределения и плотности вероятности можно использовать диаграмму типа График или Точечная (со сглаженными линиями и без точек). Подробнее о построении диаграмм читайте статью Основные типы диаграмм .
F-распределение в MS EXCEL
В MS EXCEL, начиная с версии 2010, для F-распределения имеется специальная функция F.РАСП() , английское название – F.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и интегральную функцию распределения (вероятность, что случайная величина Х, имеющая F — распределение , примет значение меньше или равное х, P(X Примечание Плотность вероятности можно также вычислить впрямую, с помощью формул (см. файл примера ).
До MS EXCEL 2010 в EXCEL была функция FРАСП() , которая позволяет вычислить функцию распределения (точнее — правостороннюю вероятность, т.е. P(X>x)). Функция FРАСП() оставлена в MS EXCEL 2010 для совместимости. Аналогом FРАСП() является функция F.РАСП.ПХ() , появившаяся в MS EXCEL 2010.
Примеры расчетов приведены в файле примера на листе Функции .
В MS EXCEL имеется еще одна функция, использующая для расчетов F-распределение – это F.ТЕСТ(массив1;массив2) . Эта функция возвращает результат F-теста : двухстороннюю вероятность того, что разница между дисперсиями выборок «массив1» и «массив2» несущественна. Предполагается, что выборки делаются из нормального распределения .
Обратная функция F-распределения
Обратная функция используется для вычисления альфа — квантилей , т.е. для вычисления значений x при заданной вероятности альфа , причем х должен удовлетворять выражению P
Функция F.ОБР.ПХ() используется для вычисления верхнего квантиля . Т.е. если в качестве аргумента функции указан уровень значимости, например 0,05, то функция вернет такое значение случайной величины х, для которого P(X>x)=0,05. В качестве сравнения: функция F.ОБР() вернет такое значение случайной величины х, для которого P(X F.ОБР.ПХ() использовалась функция FРАСПОБР() .
Вышеуказанные функции можно взаимозаменять, т.к. следующие формулы возвращают одинаковый результат: =F.ОБР(0,05;k1;k2) =F.ОБР.ПХ(1-0,05;k1;k2) = FРАСПОБР (1-0,05;k1;k2)
СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье Распределения случайной величины в MS EXCEL .
Алгоритм функции нормального стандартного распределения чисел в Excel
В новых версиях Microsoft Office была введена более универсальная функция =НОРМ.СТ.РАСП(), содержащая дополнительный аргумент, который принимает два возможных значения:
- ИСТИНА – для получения интегральной функции распределения;
- ЛОЖЬ – для получения весовой функции распределения.
Стандартное нормальное распределение (СНР) – специальная форма распределения, используемая в качестве эталона для оценки данных любого вида. Данный тип распределения по причине неудобства использования формулы общего нормального распределения на практике.
Главные особенности функции:
- Площадь участка, ограниченного кривой и осью абсцисс принята за 1.
- Стандартное отклонение считается равным 1.
- Среднее арифметическое значение принято равным 0.
- В функцию f(x) общего теоретического нормального распределения введена переменная z (стандартная нормальная).
Переменная z рассчитывается по формуле:
- X – значение некоторой случайной величины;
- µ — среднее значение;
- ó — значение стандартного отклонения.
Смысл переменной z – число стандартных отклонений, на которые отличается значение случайной величины от среднего значения.
Функция НОРМСТРАСП возвращает результат, рассчитанный на основе следующей формулы:
Именно так и выглядит алгоритм вычисления функции НОРМСТРАСП в Excel
Примеры решения задач
Рассмотрим несколько простых задач на применение правила 3 сигм.
Задача 1
Имеется выборка жителей богатого дома. Средняя зарплата жильцов составляет 150 000 рублей, среднеквадратичное отклонение равно 20 000 рублей. Определите, жители с какой зарплатой вряд ли могут жить в этом доме: А) 205 000 рублей; Б) 95 000; В) 230 000; Г) 87 000.
Решение
Чтобы решить данную задачу, необходимо определить, каковы верхние и нижние границы возможных зарплат в доме. Для этого воспользуемся правилом 3 сигм.
Значения А, Б входят в диапазон \(\left\) . Значения В, Г не входят в него и, следовательно, являются искомыми грубыми ошибками.
Задача 2
Завод выпускает партии по 100 цилиндрических деталей. Диаметр каждой детали — случайная величина, распределенная по нормальному закону. Математическое ожидание равно 65 мм, а среднее отклонение составляет 0,9 мм. Для упаковки партии используют коробки шириной 6600 мм. Детали кладут в один ряд. Если детали не поместятся в одну коробку, придется брать еще одну. Найдите вероятность, что понадобится только одна коробка.
Решение
Т. к. диаметр каждой детали распределен нормально, то и их общий диаметр также будет распределен нормально.
Чтобы все детали поместились в одну коробку, необходимо, чтобы отклонение диаметра всех деталей отклонялось от ожидаемого не более чем на 100 мм. Это следует из того, что математическое ожидание общего диаметра всех деталей равно \(65\cdot100=6500\) . А ширина коробки составляет 6600 мм.
Для расчета воспользуемся формулами дисперсии и правилом 3 сигм, чтобы вычислить вероятность, что понадобится только одна коробка.
Рассмотрим Нормальное распределение. С помощью функции MS EXCEL НОРМ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел, распределенных по нормальному закону, произведем оценку параметров распределения, среднего значения и стандартного отклонения .
Нормальное распределение (также называется распределением Гаусса) является самым важным как в теории, так в приложениях системы контроля качества
Важность значения Нормального распределения (англ. Normal distribution ) во многих областях науки вытекает из Центральной предельной теоремы теории вероятностей
Определение : Случайная величина x распределена по нормальному закону , если она имеет плотность распределения :
СОВЕТ : Подробнее о Функции распределения и Плотности вероятности см. статью Функция распределения и плотность вероятности в MS EXCEL .
Нормальное распределение зависит от двух параметров: μ (мю) — является математическим ожиданием (средним значением случайной величины) , и σ ( сигма) — является стандартным отклонением (среднеквадратичным отклонением). Параметр μ определяет положение центра плотности вероятности нормального распределения , а σ — разброс относительно центра (среднего).
Примечание : О влиянии параметров μ и σ на форму распределения изложено в статье про Гауссову кривую , а в файле примера на листе Влияние параметров можно с помощью элементов управления Счетчик понаблюдать за изменением формы кривой.
Одномерное нормальное распределение
Нормальное распределение имеет плотность::
(*)
В этой формуле , фиксированные параметры, – среднее, – стандартное отклонение.
Графики плотности при различных параметрах приведены .
Характеристическая функция нормального распределения имеет вид:
Дифференцируя характеристическую функцию и полагая t = 0, получаем моменты любого порядка.
Кривая плотности нормального распределения симметрична относительно и имеет в этой точке единственный максимум, равный
Параметр стандартного отклонения меняется в пределах от 0 до ∞.
Среднее меняется в пределах от -∞ до +∞.
При увеличении параметра кривая растекается вдоль оси х, при стремлении к 0 сжимается вокруг среднего значения (параметр характеризует разброс, рассеяние).
При изменении кривая сдвигается вдоль оси х (см. графики).
Варьируя параметры и , мы получаем разнообразные модели случайных величин, возникающие в телефонии.
Типичное применение нормального закона в анализе, например, телекоммуникационных данных – моделирование сигналов, описание шумов, помех, ошибок, трафика.
Графики одномерного нормального распределения
Рисунок 1. График плотности нормального распределения: среднее равно 0, стандартное отклонение 1
Рисунок 2. График плотности стандартного нормального распределения с областями, содержащими 68% и 95% всех наблюдений
Рисунок 3. Графики плотностей нормальных распределений c нулевым средним и разными отклонениями (=0.5, =1, =2)
Рисунок 4 Графики двух нормальных распределений N(-2,2) и N(3,2).
Заметьте, центр распределения сдвинулся при изменении параметра .
Замечание
В программе STATISTICA под обозначением N(3,2) понимается нормальный или гауссов закон с параметрами: среднее = 3 и стандартное отклонение =2.
В литературе иногда второй параметр трактуется как дисперсия, т.е. квадрат стандартного отклонения.
Нормальное распределение в статистике
История закона насчитывает 300 лет. Первым открывателем стал Абрахам де Муавр, который придумал аппроксимацию биномиального распределения еще 1733 году. Через много лет Карл Фридрих Гаусс (1809 г.) и Пьер-Симон Лаплас (1812 г.) вывели математические функции.
Лаплас также обнаружил замечательную закономерность и сформулировал центральную предельную теорему (ЦПТ), согласно которой сумма большого количества малых и независимых величин имеет нормальное распределение.
Нормальный закон не является фиксированным уравнением зависимости одной переменной от другой. Фиксируется только характер этой зависимости. Конкретная форма распределения задается специальными параметрами. Например, у = аx + b – это уравнение прямой. Однако где конкретно она проходит и под каким наклоном, определяется параметрами а и b. Также и с нормальным распределением. Ясно, что это функция, которая описывает тенденцию высокой концентрации значений около центра, но ее точная форма задается специальными параметрами.
Кривая нормального распределения Гаусса имеет следующий вид.
График нормального распределения напоминает колокол, поэтому можно встретить название колоколообразная кривая. У графика имеется «горб» в середине и резкое снижение плотности по краям. В этом заключается суть нормального распределения. Вероятность того, что случайная величина окажется около центра гораздо выше, чем то, что она сильно отклонится от середины.
На рисунке выше изображены два участка под кривой Гаусса: синий и зеленый. Основания, т.е. интервалы, у обоих участков равны. Но заметно отличаются высоты. Синий участок удален от центра, и имеет существенно меньшую высоту, чем зеленый, который находится в самом центре распределения. Следовательно, отличаются и площади, то бишь вероятности попадания в обозначенные интервалы.
Формула нормального распределения (плотности) следующая.
Формула состоит из двух математических констант:
π – число пи 3,142;
е – основание натурального логарифма 2,718;
двух изменяемых параметров, которые задают форму конкретной кривой:
m – математическое ожидание (в различных источниках могут использоваться другие обозначения, например, µ или a);
ну и сама переменная x, для которой высчитывается плотность вероятности.
Конкретная форма нормального распределения зависит от 2-х параметров: математического ожидания (m) и дисперсии (σ 2 ). Кратко обозначается N(m, σ 2 ) или N(m, σ). Параметр m (матожидание) определяет центр распределения, которому соответствует максимальная высота графика. Дисперсия σ 2 характеризует размах вариации, то есть «размазанность» данных.
Параметр математического ожидания смещает центр распределения вправо или влево, не влияя на саму форму кривой плотности.
А вот дисперсия определяет остроконечность кривой. Когда данные имеют малый разброс, то вся их масса концентрируется у центра. Если же у данных большой разброс, то они «размазываются» по широкому диапазону.
Плотность распределения не имеет прямого практического применения. Для расчета вероятностей нужно проинтегрировать функцию плотности.
Вероятность того, что случайная величина окажется меньше некоторого значения x, определяется функцией нормального распределения:
Используя математические свойства любого непрерывного распределения, несложно рассчитать и любые другие вероятности, так как
P(a ≤ X 0 =1 и остается рассчитать только соотношение 1 на корень из 2 пи.
Таким образом, по графику хорошо видно, что значения, имеющие маленькие отклонения от средней, выпадают чаще других, а те, которые сильно отдалены от центра, встречаются значительно реже. Шкала оси абсцисс измеряется в стандартных отклонениях, что позволяет отвязаться от единиц измерения и получить универсальную структуру нормального распределения. Кривая Гаусса для нормированных данных отлично демонстрирует и другие свойства нормального распределения. Например, что оно является симметричным относительно оси ординат. В пределах ±1σ от средней арифметической сконцентрирована большая часть всех значений (прикидываем пока на глазок). В пределах ±2σ находятся большинство данных. В пределах ±3σ находятся почти все данные. Последнее свойство широко известно под названием правило трех сигм для нормального распределения.
Функция стандартного нормального распределения позволяет рассчитывать вероятности.
Понятное дело, вручную никто не считает. Все подсчитано и размещено в специальных таблицах, которые есть в конце любого учебника по статистике.
Генерация случайных чисел и оценка λ
При значениях λ>15
, Распределение Пуассона
хорошо аппроксимируется Нормальным распределением
со следующими параметрами: μ=λ
, σ 2 =λ
.
Подробнее о связи этих распределений, можно прочитать в статье . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.
СОВЕТ
: О других распределениях MS EXCEL можно прочитать в статье .
Например, регистрируется количество дорожных происшествий за неделю на определенном участке дороги. Это число представляет собой случайную величину, которая может принимать значения: (верхнего предела нет). Число дорожных происшествий может быть каким угодно большим. Если рассмотреть какой-либо короткий временной промежуток в течение недели, скажем минуту, то происшествие либо произойдет на его протяжении, либо нет. Вероятность дорожного происшествия в течение отдельно взятой минуты очень мала, и примерно такая же она для всех минут.
Распределение вероятностей числа происшествий описывается формулой:
где m — среднее количество происшествий за неделю на определенном участке дороги; е — константа, равная 2,718…
Характерные особенности данных, для которых наилучшим образом подходит распределение Пуассона, следующие:
1. Каждый малый интервал времени может рассматриваться как опыт, результатом которого является одно из двух: либо происшествие (“успех”), либо его отсутствие (“неудача”). Интервалы столь малы, что может быть только один “успех” в одном интервале, вероятность которого мала и неизменна.
2. Число “успехов» в одном большом интервале не зависит от их числа в другом, т.е. “успехи” беспорядочно разбросаны по временным промежуткам.
3. Среднее число “успехов” постоянно на протяжении всего времени. Распределение вероятностей Пуассона может быть использовано не только при работе со случайными величинами на временных интервалах, но и при учете дефектов дорожного покрытия на километр пути или опечаток на страницу текста. Общая формула распределения вероятностей Пуассона:
где m — среднее число “успехов” на единицу.
В таблицах распределения вероятностей Пуассона значения табулированы для определенных значений m и
Пример 2.7. В среднем на телефонной станции заказывают три телефонных разговора в течение пяти минут. Какова вероятность, что будет заказано 0, 1,2, 3, 4 или больше четырех разговоров в течение пяти минут?
Применим распределение вероятностей Пуассона, так как:
1. Существует неограниченное количество опытов, т.е. маленьких отрезков времени, когда может появиться заказ на телефонный разговор, вероятность чего мала и постоянна.
2. Считается, что спрос на телефонные разговоры беспорядочно распределен во времени.
3. Считается, что среднее число телефонных разговоров в любом -минутном отрезке времени одинаково.
В этом примере среднее число заказов равно 3 за 5 минут. Отсюда, распределение Пуассона:
При распределении вероятностей Пуассона, зная среднее число “успехов” на 5-минутном промежутке (например как в примере 2.7), для того чтобы узнать среднее число “успехов” за один час, нужно просто умножить на 12. В примере 2.7 среднее число заказов в час составит: 3 х 12 = 36. Аналогично, если требуется определить среднее число заказов в минуту:
Пример 2.8. В среднем за пять дней рабочей недели на автоматической линии происходят 3,4 неполадок. Какова вероятность двух неполадок в каждый день работы? Решение.
Можно применить распределение Пуассона:
1. Существует неограниченное количество опытов, т.е. малых промежутков времени, в течение каждого из них может произойти или не произойти неполадка на автоматической линии. Вероятность этого для каждого промежутка времени мала и постоянна.
2. Предполагается, что неполадки беспорядочно расположены во времени.
3. Предполагается, что среднее число неполадок в течение любых пяти дней постоянно.
Среднее число неполадок равно 3, 4 за пять дней. Отсюда число неполадок в день:
Следовательно,
Где λ равна среднему числу появления событий в одинаковых независимых испытаниях, т.е. λ = n × p, где p – вероятность события при одном испытании, e = 2,71828 .
Ряд распределения закона Пуассона имеет вид:
Назначение сервиса
Генеральная совокупность и случайная величина
Пусть у нас имеется генеральная совокупность (population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.
Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.
Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения генеральная совокупность представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.
В нашем примере, ГС — это просто числовой массив значений весов деталей. Х – вес одной из деталей.
Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является случайной величиной . По определению, любая случайная величина имеет функцию распределения , которая обычно обозначается F(x).
Графики функций
В файле примера приведены графики плотности распределения вероятности и интегральной функции распределения .
Как известно, около 68% значений, выбранных из совокупности, имеющей нормальное распределение , находятся в пределах 1 стандартного отклонения (σ) от μ(среднего или математического ожидания); около 95% — в пределах 2-х σ, а в пределах 3-х σ находятся уже 99% значений. Убедиться в этом для стандартного нормального распределения можно записав формулу:
которая вернет значение 68,2689% — именно такой процент значений находятся в пределах +/-1 стандартного отклонения от среднего (см. лист График в файле примера ).
В силу четности функции плотности стандартного нормального распределения: f ( x )= f (-х) , функция стандартного нормального распределения обладает свойством F(-x)=1-F(x). Поэтому, вышеуказанную формулу можно упростить:
Для произвольной функции нормального распределения N(μ; σ) аналогичные вычисления нужно производить по формуле:
Вышеуказанные расчеты вероятности требуются для построения доверительных интервалов .
Примечание : Для построения функции распределения и плотности вероятности можно использовать диаграмму типа График или Точечная (со сглаженными линиями и без точек). Подробнее о построении диаграмм читайте статью Основные типы диаграмм .
Примечание : Для удобства написания формул в файле примера созданы Имена для параметров распределения: μ и σ.
Нормальное распределение. Непрерывные распределения в EXCEL
history 23 октября 2016 г.
Рассмотрим Нормальное распределение. С помощью функции MS EXCEL НОРМ.РАСП() построим графики функции распределения и плотности вероятности. Сгенерируем массив случайных чисел, распределенных по нормальному закону, произведем оценку параметров распределения, среднего значения и стандартного отклонения .
Нормальное распределение (также называется распределением Гаусса) является самым важным как в теории, так в приложениях системы контроля качества
Важность значения Нормального распределения (англ. Normal distribution ) во многих областях науки вытекает из Центральной предельной теоремы теории вероятностей
Определение : Случайная величина x распределена по нормальному закону , если она имеет плотность распределения :
Нормальное распределение зависит от двух параметров: μ (мю) — является математическим ожиданием (средним значением случайной величины) , и σ ( сигма) — является стандартным отклонением (среднеквадратичным отклонением). Параметр μ определяет положение центра плотности вероятности нормального распределения , а σ — разброс относительно центра (среднего).
Примечание : О влиянии параметров μ и σ на форму распределения изложено в статье про Гауссову кривую , а в файле примера на листе Влияние параметров можно с помощью элементов управления Счетчик понаблюдать за изменением формы кривой.
Аппроксимация Биномиального распределения Нормальным распределением
Если параметры Биномиального распределения B(n;p) находятся в пределах 0,1 10, то Биномиальное распределение можно аппроксимировать Нормальным распределением .
При значениях λ >15 , Распределение Пуассона хорошо аппроксимируется Нормальным распределением с параметрами: μ =λ , σ 2 = λ .
Подробнее о связи этих распределений, можно прочитать в статье Взаимосвязь некоторых распределений друг с другом в MS EXCEL . Там же приведены примеры аппроксимации, и пояснены условия, когда она возможна и с какой точностью.
СОВЕТ : О других распределениях MS EXCEL можно прочитать в статье Распределения случайной величины в MS EXCEL .